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Abstract

For many stable linear control systems, a crucial problem is to
compute allowable uncertainty bounds on system parameters. For
decades, a large number of theorems have been proposed to deal with
this robust stability analysis problem. They now cover various classes of
uncertainties, and the corresponding allowable bounds are increasingly
large. Recently, a technique was proposed for extending applications of
robust stability analysis theorems in class “gamma” over robust
controller design of single input systems, and it was shown that the
resulting control law could stabilize linear systems subjected to
nonlinear time-varying uncertainties with satisfactorily large allowable
bounds. This paper extends applications of these class gamma
theorems over robust controller design of multiple input systems.
Numerical examples show that the resulting allowable uncertainty

bounds are satisfactorily large as well.

1. Introduction

The problem of finding robust linear controllers for stabilizing linear
systems subjected to various classes of nonlinear time-varying
uncertainties has been considered in numerous papers. During recent
decades, Lyapunov Stability and Riccati equation have been employed
to reduce conservatism of allowable uncertainty bounds very effectively.
This can be tracked back to [1] and many foregoing papers, but the first
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paper that uses these theoretical tools to formalize this problem as
quadratic stabilization is [2]. For years, the early results have been
extended in many successive papers. During this period, [3] and [4]
proposed stabilizing techniques for the cases in which uncertainties
appear in the system matrix, and in the input matrix respectively. After
that, [5] presented a general technique that recognizes the formers as
its special cases, while providing original innovative extensions. Despite
of this remarkable result, it is applicable to a single class of structured
uncertainties only. In addition, the formulation is all algebraic, and thus
provides little insights into the solutions other than that they satisfy the
Riccati equation.

The problem of robust stability analysis (RSA), in which allowable
uncertainty bounds are computed for stable linear control systems, has
been considered in parallel with the above problem of robust controller
design [6-9].
robust quadratic stabilization has been reported after the publication of
[5], robust stability analysis theorems have been steadily formulated to
reduce conservatism of allowable uncertainty bounds. These useful RSA

While it seems that no major result on the problem of

theorems have been accumulated for many years, and they now cover
various classes of uncertainties. Motivated by this fact, [10] employed
matrix algebra and geometry to propose a new class-gamma RSA
theorem, and a technique for extending the uses of all RSA thoerms in
class gamma over robust controller design of single-input linear
systems.
resulting allowable uncertainty bounds could be less conservative than

Using these, it was shown in numerical examples that the

those resulting from [5]. In this paper, we extend the results in [10] to
cover multiple-input linear systems.

2. Definitions and Notations

In this section, the objective is to introduce mathematical notations
and terms used in [10] and in our extension. It is assumed that the
system of interest is described by:

X = Ax + Bu(x) + fy(x, £,u(x))

where Ae®R™ and BeR™™ are known, u(x)eR”,
fs (X, t,u) e R7 is the uncertainty vector that is locally Lipschitz in x
and ¢ and is vanishing at the origin. It is assumed that the state
X=[x3 ... x,,]T is available for feedback, and the pair [A, B] is
controllable or stabilizable.

1)

and

We are interested in nontrivial cases in
which n>1 and m > 0. When the uncertainty vector is zero, we call
Eg. (1) the nominal linear model. It is desired to stabilize the system
such that the equilibrium point of interest at the origin is uniformly
globally asymptotically stable using the linear state-feedback control:



u(x) = -Kx 2)
where K e R is such that all the eigenvalues of A =[A -BK] are
in the LHP. This yields:

x = Ax + fo (X, £) 3)
where fo (X, 1) = f5(X, £,U(X)) lugx)-—Kkx -
definite quadratic Lyapunov function:

V(x) = (1/2)x"Px 4)
where P is a symmetric positive-definite matrix obtained from the

Now, we define a positive-

Lyapunov equation:

-Q=(1/2)[PA+A’P] (5)
where Q is a symmetric positive-definite matrix to be specified. The
time derivative of the Lyapunov function along trajectories of the
nominal linear model is denoted by:

Vi(x) = -x"Qx = F,(x) - G (X)Kx (6)
where FX)=x"Mx, M=(1/2)[PA+[PA]]eR”™,and
G,(x)=x"PBe R, It is clear that V,(0)=0. We know from
Lyapunov stability that the nominal linear model is stable when V,(x) is
globally negative definite. The time derivative of the Lyapunov function
along trajectories of the uncertain system is:

Viv(x,t) = F(X) - G, (X)KX + Fo (X, )
=Vi(%,8) + Fa(x,t) (7)
= Fa(x,t) - G, (x)Kx

where Fo(x,t)=x"Pfo(x,t), Fa(x,t)=F(X)+F(x,t), and
Vu(0,¢)=0. We know from Lyapunov stability that the uncertain
system is uniformly globally asymptotically stable when Vy(x,t) is
uniformly globally negative definite. In our following discussions, we
abbreviate “uniformly globally asymptotically stable” with “stable”, and
denote the maximum eigenvalue of a matrix I e R7*" by Ar; unless
otherwise stated. We abbreviate “hyperplane” with “plane”,
by

Sn-o the set {x|MN(x) =0} where N(x) e R’ and Iis an appropriate
integer, by Pixiv.ixj} the plane spanned by {x;,...,X;} where

denote

{Xj,..X;} e R", by Re<ojugoy the set {x|O(x) <0} {0} where
O(x) e R. We often call Sp_o a zero surface.

A RSA theorem is said to be in class-gamma [10] if it guarantees
that Vy(x,t) is uniformly globally negative definite when A is stable
and:

a, <0
where a,e® is a function of A, Q, and specifications of the
uncertainties, which may be structured or unstructured.

3. A Class-Gamma RSA Theorem
While our controller design technique is not limited to a specific
class of uncertainties, we assume that the uncertainties are structured
as in [10] to be consistent. The structured uncertainties are given by:
fo(x,£) = 354 [h;(x, tE; Ix (8)
where h;(x,t) e[hy, h;]1e R is an unknown function, but with known
lower bound A; <0 and known upper bound /4, >0, and E; e R
is known for all
called uncertainty specifications. Under Eq.(8), the model is now:
x = Ax -BKx + 354 [h;(x,t)E;]x
= Ax+ 34 [hy(x, t)E;Ix

j=1,2,.. r. Thevaluesof A;, hy;,and E; are

©

In [10], a class-gamma theorem for handling the structured
uncertainties in Eq. (9) was primarily proposed for the single-input
systems. We now show in the following that the theorem is valid
without assuming that m = 1.

Theorem 1: If A=[A-BK] is stable, then Vy(x,t) is

uniformly globally negative definite when:
7\,21 <0 (10)

where Az; is the maximum real eigenvalue of Z =27 obtained by:
1) Specified Q and A to compute P from the Lyapunov equation.
2) Compute A, =A+3% mE;, and ® =PA, +ATP.

3) Compute W; =[PE; + EP]=W7 .

4) Compute Aw; = T&j.lleT.pj =diag[Aw;1 ... Aw;n], where
Ty, =[Vy;1|...|Vw;n], and {vy;1, ...
orthonormal eigenvectors of W; .

,ij,,} is the set of n

5) Compute I\ﬁ,oj by setting all negative elements of Ay; to zero

6) Compute W3° =Ty, AP Ty, -
7) Compute Z = ®+ X, [(hy - hy)W3].
Proof: We write for h;(x,t),j=1,2 .., r:
hi(x,t) = hy + hi(x,t) = hy = hy + 1;(x, t) (11)
where /;(x,t) = h;(x,t)-hy . Since  hj(x,t) e [hy, hyl, 1;(X) e
[0, hy — hy1Vj . Substituting Ay +/;(x) for hj(x,t) in Eq. (10)
yields:
X =Ax+351/;(x,t)E;x (12)
Differentiating the Eq. (4) along trajectories of Eq. (12) yields:
Vi (x,t) = (1/2)x7 ®x + (1/2)554 /;(x, £)x W x (13)
Since W7 -Ww; vj, W
P,
eigenvectors {Vq‘jl,

has a set of n real eigenvalues
,ijn} and the corresponding set of n orthonormal
,Vq‘j,,} [11]. Using the linear transformation
X = Tq,]-z , we write:

x"W;x = zT[TqT,leJ,-ij lz=2"Ay;z (14)
where Ty, =[Vu,1|...|Vw;s], and X = Ax+35/;(x,t)E;x . We
set all negative elements of Ay; to zeros to produce Aﬁ}} . Thus,
zT[I\ﬁPj 12>0,and 27 [AF)]z 2 2" Ay;z = X" W x . It follows that:

zT[Af,Pj z= xT[T,;,lj ]T[Af,,oj][Tg,lj Ix=x"W:x>0 (15)

where lllj?o :[Tq}j T[I\ﬁ,"j][Tg,lj]. Because Ty, is orthogonal, we

1 _ 4T >0 _ >0 1rpT
have T,pj = T,pj , and w3 = [Tlpj-][ij][ij] .
[W;°7 =Ww;° and because (f,; - hy) = /;(x) >0, it follows that:
15(%, )XW ;x] < (hy - hy)[X" W30x] vx (16)
Applying the above inequality to Eq. (14) yields:
Vn(x,t) < (1/2)X" ®x +(1/2)} 1 ((hy - hy) X" WD) (17)

Now, because

It follows from Eq. (17) that Vy(x,t) is uniformly globally negative
definite when Az; <0. ®

4. Properties of Zero Surfaces Associated with the Lyapunov
Time Derivative along Trajectories of the Nominal Linear
Models with Multiple Inputs
In this section, we extend fundamental properties of zero surfaces

associated with V;(x) for single-input systems [10] over multiple input

systems. A fundamental property of the zero surface Sg,_¢ is:

Lemma 1: If V,(x) is globally negative definite, then
56,-0 < RiF<0)u{0)

Proof: Consider the expression for V,(x) in Eq. (6).
rank(PB) = rank(B) > 1, the zero surface Sg,_o exists and is a plane
of dimension n - rank(B)<n-1. Because V,(x) is globally negative
definite, it must be true that V,(x) is negative on Se, -0 , except at the
origin where G;(0)=0 and V;(0,t)=0. Because of these and
because of the structure of V,(x), we know that the region RiF <0140}
must exist such that Sg, -0 < R <0jug0y - @

In addition to the property in Lemma 1, we examine geometrical
properties of the function F;(x), which are completely determined by
M. This is given in Theorem 2:

Because



Theorem 2: When A is unstable or marginally stable, the

maximum eigenvalue of M is non-negative, and the number of
negative eigenvalues of M is at least 7 — rank(B) .

Proof: Because M=M’ e R™7 , M has a set of n real eigenvalues
Am and a set of the corresponding n real orthonormal eigenvectors
Vm, where Am={Ami, ..., \mp}t and Wy =4vm, ...
viyvmi =1, i=1,.., n respectively. We can employ Wy as a basis

, Vmpr Wwith

set for generating :R”7. Now, when A is unstable or marginally stable,
F;(x) cannot be globally negative definite.  Otherwise, setting
u(x)=0 can force V;(x) to be globally negative definite, and it
follows from Lyapunov stability that trajectories converge to the origin.
This contradicts the known property of A, so there must be some
x =0 belonging to R 010403 - This implies that x can be written as
a linear combination of the eigenvectors of M, and the maximum
eigenvalue of M is non-negative. We denote this eigenvalue by im;
and note that vm; € Rig 010403 - ®

Now, we know by inspecting the expression of G,(x) that Sg,_o
is a subspace of dimension n-rank(B). In addition, we recall from
Lemma 1 that Sg,_0 = Rf<0jutey. It follows that R o100}
contains at least n - rank(B) linearly independent vectors, along which
F(x)<0.
contain at least n - rank(B) eigenvectors of M. Noticing this, it follows

Since Wu is basis of R”, it follows that R <0100y

that at least n - rank(B) eigenvalues of M are negative real. ®
Corollary 1: When A is unstable or marginally stable, Sg o

contains the origin and infinitely many other points.

It is clear that £~ (0)=0.

that when A is unstable or marginally stable, the maximum eigenvalue

Proof: Now, recall from Theorem 2
of M is non-negative, while at least n - rank(B) eigenvalues of M are
negative.

When the maximum eigenvalue of M is zero, it is clear that
F;(x) =0 at infinitely many points along vym;. When the maximum
eigenvalue is positive, the fact that some eigenvalues of M are negative
implies that £;(x) changes sign. Since F;(x) is a quadratic function,
Corollary 1 follows. ®

From Theorem 2 and Corollary 1, we now know that whether A is
stable or not, it is always true that 1) 0eSp_ o, and 2)
Ami €R
know in addition that the maximum eigenvalue of M cannot be

i=1,...,n. When A is unstable or marginally stable, we
negative, while M has at least n-rank(B) negative eigenvalues.
Numerical computations show that the signs of the remaining
eigenvalues, if any, are uncertain. When A is stable, it can be drawn
from the proof of Theorem 2 that M also has at least n - rank(B)
negative real eigenvalues. However, the sign of the maximum
eigenvalue of M can now be negative. Indeed, numerical examples
show for this case that Awm;, the maximum eigenvalue of M, can be
negative, or zero, or positive. In all these cases, we arrange im; as
the maximum eigenvalues of M, and 0>Aimg >...2Am,, Where
g=rank(B)+1.

Now, it is obvious that there are two possibilities for the geometry
of Sp_o. It contains either infinitely many points including the origin,
or the origin only. The former happens when im; >0 while the latter
happens when Am; < 0. On the other hand, the geometry of Sg,_o is
unique, it is always a plane of dimension n-rank(B). Corollary 2
states an important property of the intersection between these two zero
surfaces:

Corollary 2:
SFL:O ={0}

Proof:  Knowing the existence of Sg,_q, the proof for Corollary 2

If K is such that A is stable, then Sg,_o N

is immediate from Lemma 1. ®

When A is stable, Corollary 2 states that the origin is the unique
intersection point between the zero surfaces Sg,0 and Sp . Later,
we will discuss about possibilities for their relative orientations, and then
examine how these can affect Vy(x,t). In the next section, we
examine properties of Sg,_o by referring to the properties of Sg, o

given in this section.

5. Properties of Zero Surfaces in the Lyapunov Time Derivative
along Trajectories of the Uncertain Systems with Multiple
Inputs
In this section, we examine properties of the zero surfaces Sg, o

associated with Vy(x,t) . Then we use these and the known properties

of Sg_o and Sg,_o to draw in the next section a critical situation in
which no class-gamma theorem can guarantee stability of the uncertain

To begin with, we recall that Fy(x,t)=F (x)+ Fo(x,t).

From this, we elect to examine geometry of the zero surface Sg,_o by

systems.

referring to known properties of the zero surface Sg_o. An important
property of Sg, o is given in the following Lemma 2:

Lemma 2: If Sp_o contains infinitely many points and Fo(x, )
is sufficiently small, then Xg,_o € Sp,_¢ is in a correspondingly small
neighborhood about xg, o € S5 g, Or is vanishing.

Proof: Let and define the

X£ -0 € Sk -0, region

U={x:|x-xq_| <8}. When iw>0, we have that
SUpxey F1(X)>0 and infyyy F(X)<0. Now, define
y = min(| supxey F(X) |, intxcy F(X)|), where |4 denotes the

absolute value of @ e ® . When Fy(x,t) is sufficiently small such that
v > max(| supxew Fo(X, £) |, |infyey Fa(X,t) 1),
SUpxey Fa(X,t)>0 a nd infxyy A(Xt)<0 because
Fa(x, t) = F(X) + Fo(x, t) .
follows that Fy(x,t)=0 at some xeU.

we have
Using the intermediate-value theorem, it
Repeating this for all
Xp -0 € S; -0 shows that Sg,_o is in a neighborhood about Sf o,
which is defined by the union of all the corresponding U. 1t is clear that
if Fo(x,t) is smaller than this, then we can take a smaller y in the
above process. This implies that Sg, o is in the correspondingly small
neighborhood about Sg_q. When Am; =0, similar arguments can be
employed to support the remaining statement. ®

For the case in which Sg_o ={0}, we see by inspecting the
expression for F,(x,t) that Sk _o = {0} when Fy(x,t) is negative or
zero. So we have in these cases that the two zero surfaces have the
same geometry. However, this is not true as Fo(x,t) is increasing
from zero. We now examine in Lemma 3 possible geometrical
differences between these two zero surfaces in the latter situation. In
Lemma 3, we let B denotes {x:|x|=c,c e R*}, Xz denotes a point
in B, x5 denotes xz that is located along vy , and Xp is denoted in
zEn]T .

Lemma 3: If Sp_o={0} and Fo(xg,t) increases indefinitely
from zero, then Sg,_o contains points in Bas Fo(Xg,t) =-F(x5). In
this situation, the first point in Bthat is contained in Sg, o is x5 = X5 .

Proof. When Sg o = {0}, we have that 7 (x5) <0 vxz. If we
have in addition that F,(x,¢) =0, then it follows from the definition of
Fa(x,t) that Fo(xg,t)=-F(xg)>0. Knowing these, we can prove
Lemma 4 by showing that max(F (xz)) = F(X3). Since M is real
symmetric, this is immediate from Rayleigh’s principle [11].

We now summarize our findings from Lemma 2 and 3. As
uncertainties increase from zero, |Fy(x,t)| can increase from zero to

the principal basis of M by z5 =[zs ...

certain values, and this can cause geometrical differences between the
zero surfaces Sg,_o and Sg_o. When S o contains infinitely many
point and |Fo(x,t)| is small, Sg,_o is contained in small neighborhood
about Sg o, or is vanishing. When Sg o = {0} and Fy(x,t) is non-
positive, geometry of Sg, o is the same as that of Sg_¢. As Fo(x,t)



increases to certain positive values, Sg,_o will appear first in small
neighborhood about the axis along vy .

Despite of the fact that Sr,_o intersects Sg,_o only at the origin,
it appears in many numerical examples in which geometrical differences
between Sr,_o and Sg,_o are small that S, _o can intersect Sg,-o
at nonzero points. In the next section, we show that these nonzero
intersection points are highly undesirable when applying a class-gamma
theorem. Then, we use the known properties of these zero surfaces to
show how the occurrence of these nonzero intersection points may be
avoided when geometrical differences between Sg_o and Sg o are
small.

6. A Necessary Condition for all Class-Gamma Theorems

If a pair (K,Q) satisfies a class-gamma theorem such that a, <0,
then it is necessary that such (K,Q) forces Vy(x,t) to be uniformly
globally negative definite. In Lemma 5, we examine the critical situation
in which this cannot happen under all (K,Q) .

Lemma 4: For Vy(x,t) to be uniformly globally negative definite,
it is necessary that Sg,_o intersects Sg,_o only at the origin.

Proof: We assume that these two zero surfaces intersect at a
nonzero point x®. Now, because we have at x® that F,(x®,t)=0
and G,(x®)=0, it is obvious that V(x®,¢)=0 no matter what
u(x®) is. This condition implies that Vy(x,¢) is not uniformly globally
negative definite. ®

It is clear that uncertainties are the cause of geometrical differences
between Sr,_o and Sg,_o and the undesirable possibility that Sg, o
intersects Sg,-o at a nonzero point. When uncertainties are large, it
may be that Sg,_o considerably deviates from Sg _o. In this case, it
may be that this undesirable possibility cannot be avoided, and no class-
gamma theorem can guarantee stability of the uncertain systems. The
question is whether we can avoid this when uncertainties and
geometrical differences between these two zero surfaces are reasonably
small.

For the case in which Sg_o contains infinitely many points, it
appears in many numerical examples that Sg,_o can be very close to a
particular portion of Sg_o such that small geometrical differences
between Sg,_o and Sp o in that portion cause nonzero intersection
points between Sg,_o and Sg,_¢ . For the case in which Sg o = {0},
Sry-0 can intersect Sg,_o at a nonzero point as well if Sg,_o is very
close to a particular portion of the axis along vy; . Noticing these, we
want to find (K,Q) such that Sg,_o is not close to a particular portion
of Sg o, nor a particular portion of the axis along vm; . We conclude
this as:

Condition of Symmetry [10]: When Sg, _o contains infinitely many
points, the zero surface Sg,_¢ is symmetric about the zero surface
Sk -0. When Sk _o = {0}, the zero surface Sg,_o is symmetric about
the axis along the eigenvector vy .

We emphasize that the relative orientation of the zero surfaces
specified by the condition of symmetry may not be the most suitable for
a specific set of uncertainty specifications and a specific class-gamma
theorem. However, the condition offers a “safe” relative orientation for
these surfaces, which is reasonable under all uncertainties and all class-
gamma theorems. It is this versatility that motivates the use of the
condition of symmetry in our procedure for extending the uses of class-
gamma theorems over robust controller design. In the next section, we
show that the condition of symmetry can be satisfied by a special set of

K, Q).

7. Obtaining (K, Q) to Satisfy the Condition of Symmetry
According to the known properties of zero surfaces, the condition
of symmetry is satisfied if we have simultaneously that:

S1) When Sg o ={0}, Pwmg...vmn} 1S Symmetric about the axis
along the eigenvector vy .
S2) When Sg o contains infinitely many points,
Piumg,..vmn} IS Symmetric about Sg o .
S3) Se;-0 = Povmg,...vmn}
S4) Lemma 1 is satisfied.
To show that these requirements can be satisfied simultaneously,
To begin
with, recall that the n eigenvectors of M are orthonormal. Knowing this,

we introduce several theorems and lemmas in this section.

it is trivial to show that the axis along vy; is orthogonal to the plane
Pwmg ... vmn - Clearly, this implies that the plane Puyy,..vmpy IS
symmetric about the axis along vu; , so we skip the proof for this and
for S1). Next, we show in Lemma 5 that S2) is true:

Lemma 5; When Sg
Pmg,...vmn3 1S Symmetric about the zero surface Sg o .

Proof: In this case, Aim the signs of
Am2,-..,AMg-1 are uncertain, and Amg,...,Ams <0. Now, we consider

the case in which Ay >0 .

contains infinitely many points,
is non-negative,

Using the linear transformation x = Tmz

and the transformation matrix Tm =[vmi | ... | vMs], we obtain the
expression for F;(x) :
Fi(x) = xX"Mx = 2" [TjMTylz = 2" Az = F(2) (18)

Direct expansion yields:
(19)
We denote in the principal basis of M a point in Poumg ..ovMn? by

Fi(Z) = Ay 2]+ 4 Mg 1 25 4 + Mg ZF + ...+ hmy 25
z=00..0 z; ... 2,7 = Zaumg,ovmn) - We see that
/-'L(z(ng,,_,,vM,,}) <0, except at the origin where F,(0)=0. The
expansion implies the existence of a sufficiently large value for z; such
that F(z)=0 at

vector joining zg —o,1 and Zivyg,...,vmp} IS

7 _
z=[2y ... Zg1 24 ... Z5]" =2F 1. The

[21 zg—l 0 ... O]T =2Za1
Now, notice that F;-(z) =0 when
z=[-z .. 2,77 =Zfr-0,2

The vector joining zf g, and Z{ymg,..vMpn} IS

~Zg-1 Zg ...

[—21 _Zg—l 0 ... O]T =2Zx)
are the same, we assert the
When the maximum

and z,,
about

Since the lengths of z,;

symmetry of  Pumg,...,vmn} Sk -0-
eigenvalue of M is zero with multiplicity g, the expansion of F;(z)
implies that Sg, o is spanned the corresponding set of g orthonormal

eigenvectors other than VMg -/ VM The symmetry is immediate

-
from this observation. ®

Now, we have shown that S1) and S2) are true without imposing
constraints on (K,Q) . In the followings, the objective is to show that
S3), and S4) can be satisfied simultaneously when (K, Q) is obtained in
a special fashion. We now define the matrix:

N=(1/2)[[PBIK + K" [PB] ] (20)
where N is drawn from the Lyapunov equation after substituting
A-BK for A. The first step is to show some relationships between
the eigenvectors of M and N under special choices for Q. These are
given in Lemma 6:

Lemma 6: If Q=d, c eR*, the sets of eigenvectors of N and
of M are the same. In addition, the eigenvector vy; is an eigenvector
corresponding to the maximum eigenvalue of N.

Proof: Substituting [A-BK] for A, and d, c e R* for Q in the
Lyapunov equation produces:

-Q=-d=(1/2)[PA+A’P]-(1/2)[[PBIK +K"[PB] ]=M-N (21)
We premultiply and postmultiply every term in Eq. (21) by T,G and Ty
respectively to obtain:



-d = Ay -T]NTy (22)
Since I and Ay are diagonal, T,GNTM = Ay is diagonal, and thus
implying that N can be diagonalized by using vwm;, 7=1,.., 1.
Accordingly, N and M have the same set of eigenvectors, and Ay =
diag[ing ...
M, it follows from Eq. (22) that An; is the maximum eigenvalue of N.

Annl- Now, because Ay is the maximum eigenvalue of
Since M and N share the same set of eigenvectors, vy is an
eigenvector of N corresponding to An; . ®

Matrix theory was employed in [10] to arrive at the preliminary
conclusion that S3) and S4) are satisfied simultaneously when Q = A
and K=pB’P.
reverse the argument to shorten the proof. This is accomplished by

For the present case of multiple input systems, we

showing that under the preliminary choices of Q =d and K =pB’P,
S3) and S4) are satisfied simultaneously.

If Q=c and K =pB’P, where ¢,p e R*, then
56,-0 = Pvmg,..vmpy @nd Lemma 1 is satisfied.

Theorem 3:

Proof: With u(x) = -Kx = —-pB” Px , we obtain:

G, (x)u(x) = -x”Nx = —p[x” PB][x"PB]” = -G,(x)G] (x) <0 (23)
where N = p[PBB’P]=N’, and x”Nx > 0. We know that:
N has a set of n orthonormal

eigenvectors Vg = {Vxy, --»VN,} SPanning R”.
2) For i=1,..n, Ay =0 because x’Nx >0 and N=N’ .

Now, Eq. (23) implies that:

Se;-0 = {x|x"Nx =0} (24)

Because dim(Sg,-0) = 7 —rank(B) and because the n eigenvectors of
N are orthonormal, we know that a basis of Se,-0 is a set of
n—rank(B) orthonormal eigenvectors of N. For convenience, we
arrange the vectors in this basis as  {vgg, -..,V§,} and denote the set
of the corresponding eigenvalues by {Ajg,..-,An,}- EQ. (24) implies
that these are all the zero eigenvalues. Indeed, if N has other zero
eigenvalues then x’Nx =0 along the corresponding orthonormal
eigenvectors, implying that  dim(Sg,-0) > 7—rank(B). This is a
contradiction, and thus N has exactly n - rank(B) zero eigenvalues.

The remaining rank(B) eigenvalues of N

1) The real symmetric matrix

are positive because

x"Nx>0.
Now, we have in the orthonormal basis of M and N that:
-d=Aw-Ay (25)
where Ay =diag[Ay; ... Aj,]. We see that Am; = -c <0 because

Ay=0, i=g,..,n, and x’Nx =0 on the space spanned by the
Since {x|x"Nx=0}= Sg,-o, it follows that
VM; Spans Sg,_o such that Am; <0 . Accordingly, S3) is satisfied.

The imposed choices of Q, and K produce the Riccati equation:

-2d =PA+A’P-2pPBB’P (26)
Existence and uniqueness of the solution P of Eq. (26) is guaranteed,
provided that [A, B] is controllable or stabilizable, and the gain matrix
K = pB”Px is a stabilizing solution [12]. ®

In Theorem 3, we restrict that Q =d when obtaining (K, Q)
satisfying the condition of symmetry. In the following Theorem 4, we
present our final result without this restriction.

Theorem 4: If P is the solution of the Riccati equation (26),
then setting K = npB’P [n=1 produces (K,Q) satisfying the condition
of symmetry, and Q need not be d. The nominal linear model is
guaranteed to be stable.

Proof:  With P obtained from the Riccati equation, substituting
np[PB] for K7 in Eq. (21) yields:

Q=-M+N+(n-1)N=d+(n-1)N (27)

corresponding vy -

Since n>1, N=N’ and N>0, Eq. (27) implies that Q is symmetric
positive definite and Q need not be cI. By Lyapunov stability, this
guarantees stability of the nominal linear model. Substituting np[PB]

for K in Eq. (21) does not alter the condition of symmetry, because
the eigenvectors and the eigenvalues of M, and Sg,-o are the same.
®

Using Theorem 4, we now can generate the pairs (K,Q) that
satisfy the condition of symmetry without restricting that Q=d.
These are potential candidates for solutions of all class-gamma
theorems, and for our robust controllers.

8. Using a Class-Gamma RSA Theorem for Robust Controller

Design

To obtain a robust controller, we begin by selecting a class-gamma
theorem to match the available uncertainty specifications. Then, we
determine if a candidate (K, Q) with the property of symmetry, or a pair
of matrices with correct dimensions located nearby, is a solution for the
selected class-gamma theorem. As in [10], we have for the present
case the advantageous property that the candidates are generated from
the two scalar parameters p and n. Accordingly, we simply plot a,
versus these two parameters in 3D and select from the plot the
coordinate at which a, <0 to find the solution (K, Q). Simple
univariate numerical search [13] can be employed to find solutions
located nearby the candidates when starting at points corresponding to
small values of a, obtained from the plot.

9. Example
Consider the problem of designing a robust linear controller for a
helicopter [14] about an operating point. For a range of wind speed,
the helicopter dynamics is represented by:
X =[A+ (X, t)E + (X, t)E]x +[B + A3(X, £)Ez]u
-0.0366 0.0271 0.0188 -0.4555 0.4422 0.1761

| 0.0482 -1.01 0.0024 -4.0208| . |0.0447 —7.5922
where A=| ;1002 0.2855 -0.707 1.3229 |’ B=| -5.52 499 |’
0 0 1 0 0 0

. h(x,£) e[-0.2192

ocoo

0000 0000 0
E=10 %00 B=[0001 B0

0000 0000 00
,0.2192] , h(x,t) e[-1.2031,1.2031], and A3(x,t) e[-2.0673,2.0673] .
The objective is to find K for u = -Kx to stabilize the system for all
possible uncertain functions A;(x,t), /=1, 2, and 3. The nominal
linear model is unstable because two of the eigenvalues A are in the
RHP. For the specified uncertainty specifications, a stabilizing solution
for this problem can be found in [14].

We demonstrate the effectiveness of the proposed technique by
showing that our linear controller can stabilize the system when the
uncertainties increases by 20%, or M(x,t)e1.2[-0.2192 ,0.2192],
m(x,t) e1.2[-1.2031, 1.2031], and /5(x,t) €1.2[-2.0673, 2.0673].
Our controller design process starts by selecting an appropriate class-
gamma RSA theorem, then employ Theorem 3 and 4 to construct a 3D
plot of a, versus p,and n. Using Az in Theorem 1 as a, produces
the 3D plot in Fig. 1. Data shows that there are infinitely many points
(p,m) at which Az; <0. We simply select (p,n)=(0.06,1.6), which
corresponds to Az = -0.0052. The corresponding state-feedback gain
matrix is:

-0.0401

K _[ 03448
- -0.2724 0.1715 0.4940

-0.0113 -0.3888 -0.5856}
The four eigenvalues of A are located at s = —0.8597 + j1.0525,
- 4.8231, and - 0.3922 in the complex plane.

Although not required theoretically, we provide simulations in Fig. 2
for completeness. In these simulations, the assumed uncertain functions
are  M(x,t)=1.2(0.2192)sin(xix2t)  Mm(x,t) =1.2(1.2031)sin(x3X4)
and /5(x,t)=1.2(2.0673)cos(xix3) . From two initial conditions Xg
and Xq,, simulations confirm that our linear control can force the

trajectories to converge to the origin.



The above enlarged allowable uncertainty bounds are not the least
conservative bounds we can obtain. By using the simple univariate
search [13], we can find stabilizing controls for up to 72% increases in
uncertainties when the search starts from initial condition corresponding
to small values of a, =iz, obtained from the 3D plot. We start the
univariate search from (K, Q) corresponding to (p,m)=(0.2,1.275),
and iz; =1.3546. The search took approximately 1 minute on a 400

MHz PC, and yielded the linear state-feedback gain matrix:

K- 0.4604 -0.0310 -0.9121 -1.1086

~|-0.0378 -0.5740 0.1841 0.8699
This corresponds to Az; = -1.6585x10, and places the eigenvalues
of Aat s=-1.5465+0.6234, -0.3304, and -8.7442 in the

complex plane. Simulations in Fig. 3 confirm stability of the resulting
control system. It appears in our investigation that the search fails to

find a solution if the initial K is simply selected to stabilize A , and the
initial Q is simply selected to be symmetric positive definite.

(p. n Az1) = (0.06,1.6,-0.0052)

Fig. 1 3D Plot of Az; from Theorem 1 versus p, and n
for 12 % Increases in Uncertainties
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Fig. 2 Simulation Results when Uncertainties Increase 72%

10. Conclusion

For a linear control system, a class-gamma robust stability analysis
(RSA) theorem guarantees that the system remains stable under
nonlinear time-varying uncertainties by showing that the time-derivative
of a quadratic Lyapunov function along trajectories of the uncertain
system is uniformly globally negative definite if a certain inequality
a, <0 is satisfied. Many of these theorems have been proposed
through decades, and they now available for various classes of

uncertainties. Motivated by this fact, applications of these theorems
were recently extended to cover robust control of the uncertain linear
This paper extends this result further to
cover robust control design of the uncertain linear systems with multiple
inputs.

In this paper, it was shown that a certain relative orientation of zero

systems with single input.

surfaces associated with the Lyapunov time derivative along trajectories
of the nominal linear model is particularly useful when requiring that the
class-gamma theorem of interest be satisfied. Two theorems were
proposed to generate controllers that guarantee this relative orientation.
It turns out that these theorems require only two scalar parameters to
generate such controllers. This is the most advantageous property as it
allows us to plot a, versus the two parameters in 3D, and simply select
from the plot a coordinate at which a,<0 to compute the
corresponding stabilizing solution. For increased uncertainties, simple
numerical searchs can be used to find stabilizing solutions when the
initial conditions correspond to small values of a, in the 3D plot.
Examples show that our controllers can guarantee stability of multiple-
input linear systems such that the resulting allowable uncertainty

bounds are satisfactorily large.
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