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Stress Intensity Factor in Dissimilar Materials under Thermal Loading
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Abstract

In a joint of dissimilar materials with an internal interface corner under thermal loading, the stress
distributions around the vertex point can be investigated by BEM. The corresponding stress intensity
factors for the stress singularities of power law and logarithmic law can be obtained. For various material
combinations, it can be seen that the stress intensity factors in dissimilar materials under a uniform
change in temperature are proportional to the temperature variation, and depend on the difference in the
thermal expansion coefficients.

Keywords: Stress intensity, Dissimilar materials, Thermal stress.

1. Introduction
Dissimilar materials joints have been used in
various engineering and structural applications.
The bonded joints usually are composed of two-

materials with different elastic properties and

thermal expansion coefficients, such as solder
joints, Brazing joints and adhesive bonded joint in
electronic packaging applications. However, the
unbounded stress possibly exists around the

vertex of the bonded joint due to the discontinuity
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of material properties. Then, the failure of the
joint and initial crack can occurs, and so that the
function of the joint in the application could not
maintain any longer. Therefore, it is interesting to
investigate the characteristic of stress singularity
fields around the vertex point in three-dimensional
bonded joints under thermal loading for improving
reliability of the bonded joint in engineering
applications.

Due to the occurrence of stress singularity at
the vertex point of dissimilar materials, failure
occurs and the reliability of joints significantly
decreases. It is well-know that the order of stress
singularity, A , is essential in the determination
of the most serious state of stress around the
singular point in the joint. The stress distribution
around the singular point can be investigated
using numerical methods (BEM or FEM).
However, the order of stress singularity cannot be
estimated directly from the stress distribution as a
joint is made of materials yielding a complex
number or several real numbers of the order of
stress singularity. Therefore, the methods for
directly investigating the order of stress singularity
around the

singular point are interesting

discoveries.  Furthermore, the stress intensity
factors can be estimated together with every
value of the order of stress singularity and the
stress distribution using an interpolation function.
Therefore, many investigations on the order of
stress singularity have been carried out. For two-
dimensional joints, Bogy reported that the order of
stress singularity near the apex in a two-phase
bonded structure depended on wedge angles and
the Dundurs’ parameters [1-4]. Dempsey and
Sinclair reported that the order of stress

singularity at the vertex of the N-material wedges
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also depended upon the number of materials, and
logarithmic singularity can occurs [5]. Pageau et
al. have demonstrated the order of stress
singularity for all perfectly bonded two- and three-
material junctions [6, 7]. Koguchi reported that
the order of stress singularity near the apex in a
three-phase bonded structure depended on four
Dundurs’ composite parameters, and can be
reduced by a suitable arrangement of the bonded
order of materials [8]. For three-dimensional
joints, Benthem reported that the order of stress
singularities for symmetrical and antimetrical
states of stress at the vertex of a quarter infinite
cracks in a half-space depended significantly on
Poisson’s ratio [9, 10]. Bazant and Estenssoro
reported that the order of stress singularity at the
vertex of inclined cracks meeting a half-space
and the crack propagation depended on
Poisson’s ratio and crack front edge angle [11].
Pageau and Biggers reported that the order of
stress singularities at the three-dimensional
intersection of anisotropic multi-material junction
with a free surface can be minimized by varying
the fiber orientation [12, 13]. Koguchi reported
that the order of stress singularities at the corner
where four free surfaces and the interfaces of the
three-dimensional joints meet depended on the
Dundurs’ composite parameters [14]. In the
present study, the order of stress singularity for
power-law singularity and the eigenvalues around
the vertex point is investigated using the three-
dimensional eigen value analysis by FEM. Then,
the characteristics of the stress fields and the
stress intensity factors around the vertex point
under thermal loading are investigated by a three-

dimensional BEM.
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Material 2

Material 1

Figure 1. Model of a quarter sphere around the

vertex point

2. The order of stress singularity
FEM formulation wusing an interpolation
function of displacements, considering the stress
singularity presented by Yamada and Okumura
[16] and Pageau and Biggers [12, 13] is used to
investigate the order of stress singularity around
the vertex point. Figure 1 shows the model for
analysis. The vertex point is at the origin in a
spherical coordinate system. Taking the
displacement at the origin as zero, the
displacement in the i direction, U;, at each node
on the surface of FEM model near the vertex
point can be expressed as follows:

u(r,0,0)=r"f(6,9) (1)
where p=A+1. r,¢ and ¢ are the spherical
coordinates. A is the order of stress singularity.
Singular element with eight nodes using the
serendipity quadratic interpolation function is
employed for the present analysis. Angles 6 and

@ for spherical coordinates are expressed as

8 8
0= H;0;» $=> H;p (2)
j=1 j=1
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where erepresents the serendipity quadratic
interpolation function. Then, the eigen equation is
derived from the principles of virtual work for
deducing the root p.

(pZ[A]+ p[B]+[C]){u}=O (3)
There are many roots, p, obtained from solving
the eigen equation. Generally, the displacement
fields around the singular point can be expressed

as the following asymptotic series.

ui = Z r Pa fia(gi ¢! pa) (4)
a=1

where fia(¢9,¢, pa) is the angular variation of
displacement fields in the i direction. p,is the
a-th root of an eigen equation. So, the eigen

equation can be factorized for nroots as

n

I1(p-p,)=0 (5)

a=1

when the multiple root of p=p, exist, Equation

(5) is rewritten as

n

(p=p)"TI(p-p,)=0 (6)

a=2

where m is the number of the multiple root. In
this case, the results of the displacement fields
cannot be obtained by calculating only one term
of factor, but necessarily correspond with all
multiple terms of factor. The answer of m-th root
can be obtained by calculating the derivative
order (m-1)-th of the differential equation of the
displacement fields with respect to p,. Ordinarily,
the differential equation of the displacement fields
neglected the body force can be written by using
the constitutive equations and strain-displacement

relations as shown in the following expression.

2 2
N@)=| =+ o |- =0 )
oX;X;  \1-2v ) ox;0X;

where N() represents a differential operator,

which also satisfies the following expression as
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equation and the m-th order term of factor exists,
the displacements of the m-th order term of factor

can be written as follows:
am—l
ui,m = 5plm_l [r h fi1(6’¢7 pl)]
m— m- 9
= (nr)" g, (0.6.p,)+ T ()" g, (0,6.p,) P
oA TP (IN0) G, 4 (0,6, P,) +1770,, (0.4, p,)

where g, (b=1,2.m) is the angular variation of
the displacement fields in the i direction for the
logarithmic singularity terms as p=p,. For
example, the displacement component of the

fourth order term of factor, u.,, is written in the

i,31

same way.
N(ui):NHZEiﬂ:NHz;jﬂ:o (10)

U, =r*(Inr) g, (0.4,p,)+r*(Inr) g, (6.4, p,)
+ rmgi3(9!¢: pl)

(11)

where if p, =1,the displacement u,, becomes as
follow

u,(r,0,8)=r(Inr)’ g, (6,4)+r(Inr) g,(6,¢) (12)
+19,5(6,9)

Therefore, when three roots of p, =1 exist, the

displacement fields of the third order term of

factor are composed of r(Inr)’,rinr and r

terms. Finally, the displacements fields around

the singular point can be written by gathering the

results for all terms of factor as follows:

u (r.0,¢)=rg,(0,¢)+r(nr)g,(6.¢)
+rinry g, (0.9)+ Yo 1, (0.6.p,) (1)
a=2
Then, the expressions for the stress fields are

obtained  through the  differentiation of

displacements.
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;(r.0,0)=L;,(0.8)+ L, (8.9)InT + L, (0,¢)(Inr)° 14
‘*’Z:;'Ja Kija(g'¢’ pa) (14)

where L;, is the stress intensity factor of the

logarithmic singularity term (m=1,2,3), K, is that
of the r*aterm (a=2,3...n), and 1, =p,-1. The
subscripts 1, j refer r,6 and ¢ in a spherical
coordinate system. The domain for the eigen
value analysis by FEM at the vertex point is a
quarter sphere which the free surface and the
interface plane are taken at ¢=0,7/2 and
0 =112, respectively as shown in figure 1. Mesh
division with the square mesh size mapped on
plane is employed as shown in figure 2. The
number of elements for optimum calculation is

200 and the number of nodes is 661.

2 ¢

]
|

[T Material 2

Interface

Figure 2. Mesh division for FEM eigen analysis

The stress fields at the vertex point with
high stress are examined using BEM for
thermoelasticity with a uniform temperature
variation in dissimilar materials. ¢, and «;, are
the thermal expansion coefficients for material 1
and for material 2, respectively as shown in figure

3.
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Figure 3. Model for BEM analysis

3. Results and Discussion

In the present study, material properties of
Material 1 and Material 2 are defined as E; = 206
GPa, v, = 0.3 and E, = 52.6742 GPa, v, =
0.26316. It can be found that the multiple root of
(p=1) can be obtained using the three-
dimensional eigen value analysis by FEM for the
vertex point, while only the single root of (pzl)
can be obtained from the two-dimensional
eigenvalue analysis by FEM for the apex in two-
dimensional bonded joints as shown in Table 1.
Therefore, from the theory mentioned at the
beginning of the paper, the characteristic of stress
singularity fields around the vertex point in the
three-dimensional joints can be written possibly in
a form of the combination of the r* term and the
logarithmic singularity terms.  For the three-
dimensional FEM eigen value analysis, the stress

fields can be expressed as follows:

o, (r.0,4)=L,,(0,¢)+L;,(0,4)Inr

, (15)
+ L3 (6.4)(Inr) + 1K, (p,.0.9)
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Table 1. Eigenvalues for E, =206GPa, v, =0.30,

E, =52.6742GPa and v, =0.26316

Real part of  Imaginary A =Re(p)-1
p part of p
3D
1 0.8727359  0.0000000 -0.1272641
2 1.0000177  0.0000000 0
3 1.0000000  0.0000000 0
4 1.0000053  0.0000000 0
2D
1 09071225 0.0000000 -0.0928775
2 1.0000000  0.0000000 0.0000000
03 -
0.25
\ —curvefitting
02

G (GPa/K)
o

e
o

N
M

0.05

rfL
Figure 4. Curve fitting of Ggg at the interface for
AT =-100 K

The order of stress singularity of a vertex in
three-dimensional joints is obviously larger than
the apex in two-dimensional joints in plane strain
condition. Figure 4 shows the curve fitting of the
stress distribution of Gy at the interface for AT =
100K as o =1.0x10°K" and a7, =5.0x10°K .
The curve fitting performed by using equation (15)
and A =-0.1272641 is very good fit. Then, the
stress intensity factors for AT = -100K and
AT = -200K are investigated and show in Table 2.

It can be seen that the stress intensity factors are
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proportional to the temperature change. The
stress intensity factor Ky, of the r* singularity
term is larger than that for Lyp and L,g of the
logarithmic singularity terms. Therefore the
power-law singularity term has more influence on
the characteristic of stress fields around the
vertex.

Figure 5 shows the effect of a1, on stress
intensity factor (-Kgg/AT) when o1, is fixed to
1.0x10°K". It can be seen that the magnitude of
the stress intensity factor increases linearly with

aTz.

Table 2. Stress intensity factor around the vertex

LQHl LHHZ L993 KHH.I.
(GPa/K)

3D AT=-100K
-0.0205 0.001497 0.001572  0.02454

3D AT=-200K
-0.0409  0.002996 0.003145  0.04902

2D AT=-100K
-0.1130 0.0 0.0 0.09026

0.0014

0.0012

0.001 /
0.0008 /
0.0006 /
0.0004 /

A
/

a

Koo /AT (Gram)

00E+00 50E-06 10E-05 15E-05 Z20BE05 25E05

O g, Y

Figure 5. Effect of (1, on Kgg/AT
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4. Conclusion

The eigenvalues including the order of stress
singularity in a form of power-law singularity at
the vertex point in three-dimensional joints were
investigated using the FEM eigen analysis. The
order of stress singularity at the vertex was larger
than that at the apex in two-dimensional joints.
The multiple root of p =1 existed. Then, the
logarithmic singularity occurred at the vertex point
in three-dimensional joints. The stress intensity
factors of a power-law singularity term and
logarithmic  singularity terms  have  been
investigated for the stress fields around the vertex
point in three-dimensional joints under thermal
loading obtained by BEM analysis. It can be
concluded that the stress intensity factors were
proportional to the temperature change, AT, and
depended on the difference in the thermal
expansion coefficients. Power-law singularity
significantly influenced the characteristics of the
stress fields around the vertex points under

thermal loading.
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