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บทคดัย่อ  

ในรอยต่อของวสัดุตา่งชนิดกนัซึง่มผีวิเชือ่มต่อภายในและอยูภ่ายใตภ้าระการเปลีย่นแปลงทางอุณหภมูนิัน้ 

การกระจายตวัของความเคน้รอบจุดมมุของรอยต่อทาํการวเิคราะหไ์ดด้ว้ยระเบยีบวธิทีางบาวน์ดะรเีอลเิมนต ์และ

สามารถหาคา่ตวัประกอบความเขม้ของความเคน้ทีเ่กดิขึน้บรเิวณรอบจุดมมุของรอยต่อสาํหรบัเทอมความเคน้

อนนัตใ์นรปูของยกกาํลงัและในรปูของลอการทิมกิธรรมชาต ิจากการเปลีย่นแปลงคุณสมบตัขิองวสัดุทีนํ่ามา

ต่อเชือ่มกนัทาํใหท้ราบวา่ คา่ตวัประกอบความเขม้ของความเคน้สาํหรบัวสัดุต่างชนิดกนัภายใตภ้าระการ

เปลีย่นแปลงทางอุณหภมูอิยา่งสมํ่าเสมอนัน้ เป็นสดัสว่นกบัคา่การเปลีย่นแปลงทางอุณหภมูแิละแปรผนัตามความ

แตกต่างของคา่สมัประสทิธิก์ารขยายตวัเน่ืองจากความรอ้นของวสัดุต่างชนิดกนั 

คาํหลกั: ตวัประกอบความเขม้ของความเคน้  วสัดุต่างชนิดกนั  ความเคน้จากความรอ้น   

 

Abstract 

 In a joint of dissimilar materials with an internal interface corner under thermal loading, the stress 

distributions around the vertex point can be investigated by BEM. The corresponding stress intensity 

factors for the stress singularities of power law and logarithmic law can be obtained. For various material 

combinations, it can be seen that the stress intensity factors in dissimilar materials under a uniform 

change in temperature are proportional to the temperature variation, and depend on the difference in the 

thermal expansion coefficients.  

Keywords: Stress intensity, Dissimilar materials, Thermal stress.  

Dissimilar materials joints have been used in 

various engineering and structural applications.  

The bonded joints usually are composed of two-

materials with different elastic properties and 

thermal expansion coefficients, such as solder 

joints, Brazing joints and adhesive bonded joint in 

electronic packaging applications.  However, the 

unbounded stress possibly exists around the 

vertex of the bonded joint due to the discontinuity 
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of material properties.  Then, the failure of the 

joint and initial crack can occurs, and so that the 

function of the joint in the application could not 

maintain any longer. Therefore, it is interesting to 

investigate the characteristic of stress singularity 

fields around the vertex point in three-dimensional 

bonded joints under thermal loading for improving 

reliability of the bonded joint in engineering 

applications.   

Due to the occurrence of stress singularity at 

the vertex point of dissimilar materials, failure 

occurs and the reliability of joints significantly 

decreases.  It is well-know that the order of stress 

singularity, λ  , is essential in the determination 

of the most serious state of stress around the 

singular point in the joint.  The stress distribution 

around the singular point can be investigated 

using numerical methods (BEM or FEM).  

However, the order of stress singularity cannot be 

estimated directly from the stress distribution as a 

joint is made of materials yielding a complex 

number or several real numbers of the order of 

stress singularity.  Therefore, the methods for 

directly investigating the order of stress singularity 

around the singular point are interesting 

discoveries.  Furthermore, the stress intensity 

factors can be estimated together with every 

value of the order of stress singularity and the 

stress distribution using an interpolation function.  

Therefore, many investigations on the order of 

stress singularity have been carried out.  For two-

dimensional joints, Bogy reported that the order of 

stress singularity near the apex in a two-phase 

bonded structure depended on wedge angles and 

the Dundurs’ parameters [1-4].  Dempsey and 

Sinclair reported that the order of stress 

singularity at the vertex of the N-material wedges 

also depended upon the number of materials, and 

logarithmic singularity can occurs [5].  Pageau et 

al. have demonstrated the order of stress 

singularity for all perfectly bonded two- and three-

material junctions [6, 7].  Koguchi reported that 

the order of stress singularity near the apex in a 

three-phase bonded structure depended on four 

Dundurs’ composite parameters, and can be 

reduced by a suitable arrangement of the bonded 

order of materials [8].  For three-dimensional 

joints, Benthem reported that the order of stress 

singularities for symmetrical and antimetrical 

states of stress at the vertex of a quarter infinite 

cracks in a half-space depended significantly on 

Poisson’s ratio [9, 10].  Bazant and Estenssoro 

reported that the order of stress singularity at the 

vertex of inclined cracks meeting a half-space 

and the crack propagation depended on 

Poisson’s ratio and crack front edge angle [11].  

Pageau and Biggers reported that the order of 

stress singularities at the three-dimensional 

intersection of anisotropic multi-material junction 

with a free surface can be minimized by varying 

the fiber orientation [12, 13].  Koguchi reported 

that the order of stress singularities at the corner 

where four free surfaces and the interfaces of the 

three-dimensional joints meet depended on the 

Dundurs’ composite parameters [14].  In the 

present study, the order of stress singularity   for 

power-law singularity and the eigenvalues around 

the vertex point is investigated using the three-

dimensional eigen value analysis by FEM. Then, 

the characteristics of the stress fields and the 

stress intensity factors around the vertex point 

under thermal loading are investigated by a three-

dimensional BEM.  
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Figure 1. Model of a quarter sphere around the 

vertex point 

 

2. The order of stress singularity 

FEM formulation using an interpolation 

function of displacements, considering the stress 

singularity presented by Yamada and Okumura 

[16] and Pageau and Biggers [12, 13] is used to 

investigate the order of stress singularity around 

the vertex point.  Figure 1 shows the model for 

analysis.  The vertex point is at the origin in a 

spherical coordinate system.  Taking the 

displacement at the origin as zero, the 

displacement in the i direction, iu , at each node 

on the surface of FEM model near the vertex 

point can be expressed as follows:  

                       ( ) ( ), , ,p
i iu r r fθ φ θ φ=          (1) 

where 1p λ= + .  ,r θ  and φ  are the spherical 

coordinates. λ  is the order of stress singularity.  

Singular element with eight nodes using the 

serendipity quadratic interpolation function is 

employed for the present analysis. Angles θ and 
φ  for spherical coordinates are expressed as 

                   8

1
j j

j
Hθ θ

=
= ∑ , 8

1
j j

j
Hφ φ

=
= ∑        (2) 

where jH represents the serendipity quadratic 

interpolation function.  Then, the eigen equation is 

derived from the principles of virtual work for 

deducing the root p. 

[ ] [ ] [ ]( ){ }2 0p A p B C u+ + =        (3) 

There are many roots, p , obtained from solving 

the eigen equation.  Generally, the displacement 

fields around the singular point can be expressed 

as the following asymptotic series.  

( )aia

n

a

ap
i pfru ,,

1
φθ∑

=

=                 (4) 

where ( )aia pf ,,φθ  is the angular variation of 

displacement fields in the i direction. ap is the    

a-th root of an eigen equation.  So, the eigen 

equation can be factorized for n roots as   

( ) 0
1

=−Π
=

a

n

a
pp                       (5) 

when the multiple root of 1pp =  exist, Equation 

(5) is rewritten as      

( ) ( ) 0
2

1 =−− Π
=

a

n

a

m pppp                 (6) 

where m  is the number of the multiple root.  In 

this case, the results of the displacement fields 

cannot be obtained by calculating only one term 

of factor, but necessarily correspond with all 

multiple terms of factor.  The answer of m-th root 

can be obtained by calculating the derivative 

order )1( −m -th of the differential equation of the 

displacement fields with respect to 1p .  Ordinarily, 

the differential equation of the displacement fields 

neglected the body force can be written by using 

the constitutive equations and strain-displacement 

relations as shown in the following expression. 
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where ( )N  represents a differential operator, 

which also satisfies the following expression as 
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If the displacement satisfies the differential 

equation and the m-th order term of factor exists, 

the displacements of the m-th order term of factor 

can be written as follows:    
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where ibg  (b=1,2..m) is the angular variation of 

the displacement fields in the i direction for the 

logarithmic singularity terms as 1pp = .  For 

example, the displacement component of the 

fourth order term of factor, ,3iu , is written in the 

same way.  
2

2
1 1

( ) 0i i
i

u uN u N N
p p

      ∂ ∂
= = =      

∂ ∂         
        (10) 
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where if 11 =p ,the displacement ,3iu  becomes as 

follow 

( ) ( ) ( ) ( ) ( )
( )

2 1
,3 1 2

3

, , ln , ln ,

                      ,
i i i

i

u r r r g r r g

rg

θ φ θ φ θ φ

θ φ

= +

+
      (12) 

Therefore, when three roots of 11 =p   exist, the 

displacement fields of the third order term of 

factor are composed of ( )2ln , lnr r r r  and  r  

terms.  Finally, the displacements fields around 

the singular point can be written by gathering the 

results for all terms of factor as follows: 

 
( ) ( ) ( )

( ) ( )
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a
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θ φ θ φ
=
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Then, the expressions for the stress fields are 

obtained through the differentiation of 

displacements. 

( ) ( ) ( ) ( )( )
( )

2
1 2 3

2

, , , , ln , ln

                     , ,a

ij ij ij ij

ija a
a

r L L r L r

r K pλ

σ θ φ θ φ θ φ θ φ

θ φ
=

= + +

+ ∑
  (14) 

where ijmL  is the stress intensity factor of the 

logarithmic singularity term (m=1,2,3), ijaK is that 

of the ar λ term (a=2,3…n), and 1−= aa pλ .  The 

subscripts i, j refer r ,θ  and φ  in a spherical 

coordinate system.  The domain for the eigen 

value analysis by FEM at the vertex point is a 

quarter sphere which the free surface and the 

interface plane are taken at 2/,0 πφ =  and 
/ 2θ π= , respectively as shown in figure 1.  Mesh 

division with the square mesh size mapped on   

plane is employed as shown in figure 2.  The 

number of elements for optimum calculation is 

200 and the number of nodes is 661.   

 

                
Figure 2. Mesh division for FEM eigen analysis 

 

  The stress fields at the vertex point with 

high stress are examined using BEM for 

thermoelasticity with a uniform temperature 

variation in dissimilar materials. 1Tα  and 2Tα   are 

the thermal expansion coefficients for material 1 

and for material 2, respectively as shown in figure 

3. 
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Figure 3. Model for BEM analysis 

 

3. Results and Discussion 

In the present study, material properties of 

Material 1 and Material 2 are defined as E1 = 206 

GPa, ν1 = 0.3 and E2 = 52.6742 GPa, ν1

( )1p =

 = 

0.26316. It can be found that the multiple root of 

 can be obtained using the three-

dimensional eigen value analysis by FEM for the 

vertex point, while only the single root of ( )1p =  

can be obtained from the two-dimensional 

eigenvalue analysis by FEM for the apex in two-

dimensional bonded joints as shown in Table 1.  

Therefore, from the theory mentioned at the 

beginning of the paper, the characteristic of stress 

singularity fields around the vertex point in the 

three-dimensional joints can be written possibly in 

a form of the combination of the rλ   term and the 

logarithmic singularity terms.  For the three-

dimensional FEM eigen value analysis, the stress 

fields can be expressed as follows: 

 
( ) ( ) ( )

( )( ) ( )
1 2

2
3

, , , , ln

                   , ln , ,

ij ij ij

ij ija a

r L L r

L r r K pλ

σ θ φ θ φ θ φ

θ φ θ φ

= +

+ +
   (15) 

 

 

Table 1.  Eigenvalues for 1 206E GPa= , 1 0.30v = , 

2 52.6742E GPa=  and 2 0.26316v =  

 
Real part of 

p 

Imaginary 

part of p 
Re( ) 1pλ = −  

3D    

1 0.8727359 0.0000000 -0.1272641 

2 1.0000177 0.0000000 0 

3 1.0000000 0.0000000 0 

4 1.0000053 0.0000000 0 

2D    

1 0.9071225 0.0000000 -0.0928775 

2 1.0000000 0.0000000 0.0000000 

 

 
Figure 4. Curve fitting of σθθ

The order of stress singularity of a vertex in 

three-dimensional joints is obviously larger than 

the apex in two-dimensional joints in plane strain 

condition.  Figure 4 shows the curve fitting of the 

stress distribution of σ

 at the interface for 

DT = -100 K 

 

θθ at the interface for DT = 

-100K as aT1 =1.0x10
-6
K

-1
 and aT2 =5.0x10

-6
K

-1
. 

The curve fitting performed by using equation (15) 

and λ =-0.1272641 is very good fit. Then, the 

stress intensity factors for DT = -100K and        

DT = -200K are investigated and show in Table 2. 

It can be seen that the stress intensity factors are 
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proportional to the temperature change. The 

stress intensity factor Kθθ1 rλ of the   singularity 

term is larger than that for Lθθ2 and Lθθ3 of the 

logarithmic singularity terms.  Therefore the 

power-law singularity term has more influence on 

the characteristic of stress fields around the 

vertex.  

Figure 5 shows the effect of aT2 on stress 

intensity factor (-Kθθ /DT) when aT1 is fixed to 

1.0x10
-6
K

-1
. It can be seen that the magnitude of 

the stress intensity factor increases linearly with 

aT2 

 

.  

 

Table 2. Stress intensity factor around the vertex 
L Lθθ1 Lθθ2 Kθθ3 θθ1 

  (GPa/K)   

3D DT= -100K 

 -0.0205 0.001497 0.001572 0.02454 

3D DT= -200K 

 -0.0409 0.002996 0.003145 0.04902 

2D DT= -100K 

 -0.1130 0.0 0.0 0.09026 

 

 
Figure 5. Effect of aT2 on Kθθ 

4. Conclusion 

/DT 

 

The eigenvalues including the order of stress 

singularity in a form of power-law singularity at 

the vertex point in three-dimensional joints were 

investigated using the FEM eigen analysis. The 

order of stress singularity at the vertex was larger 

than that at the apex in two-dimensional joints. 

The multiple root of p =1 existed. Then, the 

logarithmic singularity occurred at the vertex point 

in three-dimensional joints. The stress intensity 

factors of a power-law singularity term and 

logarithmic singularity terms have been 

investigated for the stress fields around the vertex 

point in three-dimensional joints under thermal 

loading obtained by BEM analysis. It can be 

concluded that the stress intensity factors were 

proportional to the temperature change, DT, and 

depended on the difference in the thermal 

expansion coefficients. Power-law singularity 

significantly influenced the characteristics of the 

stress fields around the vertex points under 

thermal loading.   
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