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Abstract 

 We present a Large-Eddy simulation of a vortex cell with circular shaped. The results show that 

the flow field can be sub divided into four important zones, the shear layer above the cavity, the 

stagnation zone, the vortex core in the cavity and the boundary layer along the wall of the cavity. It is 

shown that the vortex core consists of solid body rotation without much turbulence activity. The vortex is 

mainly driven by high energy packets that are driven into the cavity from the stagnation point region and 

by entrainment of fluid from the cavity into the shear layer. The physics in the boundary layer along the 

cavity's wall seems to be far from that of a canonical boundary layer which might be a crucial point for 

modelling this flow. 

 

1. Introduction 

 Lift enhancement and drag reduction is 

one of the most demanding technologies in 

aviation industry. To ensure a high lift-to-drag 

ratio, wings of modern aircraft are thin and 

streamlined. However, from a structural-strength 

point of view, having thick wings would be 

beneficial in order to carry a larger load. As the 

progress in aviation leads to an increase in the 

size of transport aircraft, the balance between 

structural-strength and aerodynamic quality shifts 

in favour of a thick wing. The flow past a thick 

airfoil, however, is likely to separate, which affects 

the aerodynamic performance of the wing (Fig.1a). 
Trapping vortices by a so-called vortex cell is 

considered to be able to prevent flow separation 

and large-scale vortex shedding which would in 

turn reduce the drag (Fig.1b). In this paper we 

investigate the physics of vortex cell flows by 

means of a large-eddy simulation. We consider 

the geometry of a round cavity as sketched in 

Fig.2. Significant mechanisms are identified and 

the study shows that this vortex cell works 

against flow separation mechanisms. 

 Control algorithms must be robust and 

fast, thus solving three-dimensional problems are 
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not allowed. An insightful understanding of the 

physics in vortex cell flows is required to create a 

two-dimensional turbulence model that is 

sufficiently accurate and affordable in real-time 

control. In order to achieve this aim, Large-Eddy 

simulation (LES) is the only viable option that can 

represent the highly transient and three 

dimensional nature of the problem at sufficient 

accuracy within affordable time. As a part of the 

investigation of vortex cell flows, we study a 

vortex cell flow with homogeneous spanwise 

direction. This will serve as the two-dimensional 

limit where LES and numerical simulation of 

Reynolds-Averaged Navier-Stokes equations 

(RANS) should agree, when the turbulence is 

modelled correctly. In a later phase of the study, 

effects of finite span and oblique direction of 

incoming flow can be identified using this 

simulation as a reference. In this work, an 

Investigation of the flow physics inside the vortex 

cell with circular shape by means of large-eddy 

simulation is presented. We first outline the 

governing equations, methodology and setup of 

the numerical experiment. First- and second-order 

statistics obtained from the numerical simulation 

are then presented and discussed.         ……….        

 
(a) (b) 

Fig.1: Flow past thick wing: (a) without trapped 

vortex cell and (b) with a trapped vortex cell 

 

2. Numerical Approach 

 In this numerical simulation, we solve the 

Navier-Stokes equations for incompressible 

Newtonian flows: 
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The Navier-Stokes equations (NSE) are 

integrated within the standard framework of finite 

volumes using staggered Cartesian grids. The 

spatial approximations are second order accurate 

and use centered interpolations and 

differentiations. Time integration is performed via 

a fractional step method using a third-order 

Runge-Kutta scheme. The pressure is obtained 

by a projection formulation at the end of each 

substep. The Poisson equation is solved by 

Stone's strongly implicit procedure (SIP). See e.g. 

Ferziger and Peric [1] for a review 

on these standard methods. Detail information 

and accuracy of the code can be found in 

[2,3,4,5]. 

2.1 Immersed Boundary Method 

 Solid surfaces that are not ligned with the 

boundary of the Cartesian control volumes are 

represented by Immersed boundary method. The 

basic concept of our immersed boundary method 

(IBM) is a functional fitting. A certain 

approximated function f(x,y,z) is assumed to 

represent the  velocity field and boundary 

condition locally near the interpolating point. This 

function is determined by the method of 

undetermined coefficients. Once the 

approximated function is obtained, velocity 

components at a given point can be extracted. 

Lagrange polynomial, cubic spline and least 

square polynomial are available in our code. This 

gives a second-order smooth representation of 

the curved surface in our Cartesian grid. Detail 

information about the immersed boundary method 
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can be found in [6]. The IBM used in the code 

has been used successfully in turbulent flows 

investigation [7,8,9]. 

2.2. Large-eddy simulation and SGS  model 

 The computational cost of Direct 

Numerical Simulations (DNS) is hardly feasible for 

complex flows at high Reynolds number such as 

the vortex cell flow we intend to study. Therefore 

LES is the only possibility to investigate this type 

of flow. LES is based on the assumption that the 

quantities describing the turbulent flow can be 

decomposed into large scales and small scales. 

The large scales contain most of the energy and 

most of the flow dynamics. However, the large 

scales interact with the small scales and evolve in 

time. Therefore the small scales cannot be 

neglected even if we are only interested in the 

large scales. The goal of LES is to accurately 

compute the large flow structures and model the 

effect of the small scales together with their 

interaction with the large scale structure. The 

large scale structures are determined by a spatial 

filtering operation. The effect caused by the small 

scale structures is modelled by the subgrid stress 

tensor (SGS). The filtered NSE are defined as : 
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When the filtered NSE are solved numerically, 

only the filtered quantities are available. Therefore 

the nonlinear convective term in the above 

equation must be approximated. In this work we 

approximate it by ijijij uuuu τ+= . The subgrid 

stress tensor ijτ  in this simulation is modelled by 

the Lagrangian dynamics SGS model of 

Meneveau[10] in which the average of the 

Germano identity and error are minimised over 

the fluid particle trajectories. 

 3. Setup of the simulation 

 The shape of the cavity is shown in Fig.2. 

The reference length is the cavity diameter, D. A 

flat plate is attached to both ends of the cavity 

surface. The computational box is given by 

[Lx,Ly,Lz] = [6D,2D,5D] in streamwise, spanwise 

and wall normal direction, respectively. The origin 

of the coordinate system is located at the cavity 

leading edge (cusp, depicted as ”D”). The 

turbulent inflow boundary condition is set at x=-

2.85D. A block structured Cartesian grid is used 

to represent the flow domain. This consists of a 

sub domain covering the channel above the 

cavity and one covering the cavity only.  

 
Fig 2: Cavity cell and lines of interest. 

 

 A zero-gradient velocity and zero (total) 

pressure is imposed at the outflow plane to which 

the grid is highly compressed in order to reduce 

numerical wiggles. A slip condition is imposed at 

the top wall at z=4D. The bottom boundary 

condition is given by the no-slip walls of the cavity. 

The time-dependent turbulent boundary layer at 

the inflow plane is constructed by a superposition 

of fluctuations onto a time-averaged velocity 

profile. In this work, a precursor simulation of 

canonical turbulent boundary layer is simulated 

using the inflow taken from DNS calculations of 
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Spalart[11] the fluctuations are extracted at x/ 0δ  

=10 downstream of the inlet by computing the 

difference between the instantaneous velocity and 

the one which was averaged in the spanwise 

direction. This method has proven to be useful in 

previous direct numerical simulations of turbulent 

boundary layers [12] and shown to be equivalent 

to the one proposed by Lund [13]. After the mean 

streamwise velocity adapted to the flow conditions 

and reached the self-similar profile, it is extracted 

and used as the mean inflow conditions in the 

present work. The boundary condition at the 

inflow based on boundary layer thickness is set to 

24,000  Re =δ where the boundary layer 

thickness δ is chosen to be a quarter of the 

cavity's diameter. The mean inflow profile and the 

resulting fluctuations at the inflow due to 

turbulence generated by the recycling of 

perturbations are shown in Fig.3. 

 The grid resolution is set to [Nx,Ny,Nz] = 

[564,80,145] in the channel and [Nx,Ny,Nz] = 

[240,80,154] in the cavity grid which add up to 

9.5·10
6

x∆

 grid cells. At their interface, both grids 

conform in all three directions. In the streamwise 

direction, cells are clustered at the rounded 

impingement edge with =0.0023D and towards 

the outflow plane x∆ =0.007D. In the spanwise 

direction, an equidistant grid with y∆ =0.025D is 

used. In wall normal direction, a strong clustering 

at z=0 for the wall and shear layer with 

minz∆ =0.002D. 

4. Results 

 In this section, we present profiles of time 

and spatially averaged velocity profiles at 

locations of interest indicated in Fig.2.  

 
Fig 3: Mean inflow profile (top) imposing at the 

inlet (x=-2.85D) and the resulting fluctuations 

shown in r.m.s. of the velocities (bottom). 

 

The averaging has been done over a time span 

of 200 ∞u/D  and in the spanwise direction. Our 

focus here lies on the description of the vortex 

inside the cavity, the boundary layer along the 

cavity's wall and the shear layer bounding the 

cavity. 

4.1 Time-averaged quantities: profiles 

 The time-averaged tangential velocity 

profiles inside the cavity along the lines EF and 

AB are shown in Fig.4. In the centre of the cavity, 

the profiles are nearly straight lines which implies 

a solid-body rotation in this region whose 

coordinate [ ]cc z,x  = [0.18D,-0.44D] close to the 

center of the cavity. The radius =r  

( ) ( )2c
2

c y-yx-x + is used when the 

positioning is referred to this center. The diameter 

of this is region is roughly 0.5D. The center can 

be identified by the inflection point of the gradient 

of the tangential velocity (not shown). Interestingly, 

the inner core region (  ≤r 0.25D) rotates faster 
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than the outer part of the core (0.2D ≤≤ r 0.5D). 

This solid body rotation is enclosed by a 

boundary-layer-like region. The characteristics of 

this region are continuously changing along the 

curvature of the cavity. At B, the profile of the 

tangential velocity (Fig.4b) shows an inflection 

point which has visually disappeared at E (Fig.4a). 

This region is developed into a constant gradient 

at A (leeward side of the cavity) and later merged 

with the oncoming shear layer at the top of the 

cavity.  

 The wall-normal velocity shows a different 

direction of the fluids relative to the core. In 

Fig.4c the fluids is strongly moving from B 

towards the core and then decelerated once it 

reaches the core. Along EF, the fluid moves 

towards the wall in the boundary layer region and 

it travels to the shear layer across the core. Along 

AB, outside the boundary-layer-like region, there 

is relatively no radial motion of the fluid. 

 In what follows, we consider the 

Reynolds stresses on the same lines as the mean 

velocities. Note, that at line AB, the wrms

∞≈ 0.25uu l

 is in the 

streamwise direction of the local flow direction. 

We check if these values of the Reynolds normal 

stress could fit to the boundary layer along the 

cavity's wall. From Fig.4b, we learn that at point B 

the local free stream velocity, . 

Based on this velocity, the corresponding peak of 

the r.m.s. of the fluctuations according to Fig.5a 

are approximately 0.25 lu , 0.24 lu  and 0.19 lu , in 

local streamwise, spanwise and normal direction, 

which is much larger than what can be observed 

in canonical boundary layers. In addition, the local 

boundary layer thickness is smaller than 0.05D. 

However, the extensions of the R.M.S. at point B 

are approximately four times larger. At point E, 

we observe that the level of the normal stresses 

of the tangential component is slightly decreased 

while that of the wall-normal and the spanwise 

component are significantly reduced and they are 

still extending far more away from the wall than 

the local boundary layer thickness. At point A, the 

turbulence levels of the wall-normal and the 

spanwise velocities have only a half of their 

energy at B. Nevertheless, the turbulence 

intensity is way too strong to stem from a 

canonical boundary layer. This behaviour of the 

Reynolds normal stresses is far from that of a 

canonical zero pressure gradient boundary layer 

along the cavity wall --- with all consequences for 

modelling.  

 The Reynolds shear stress <u'w'> is 

plotted along lines AB and EF in Fig.5d&c. The 

shear stress behaves in a complicated way. First, 

it can be stated that is nearly symmetric on line 

AB with respect to the centre of the cavity with 

nine relative extrema. The first extrema is the 

center of the rotation. The next two extrema are 

the transition between the core and the boundary 

layer. At point B, we observe two local extrema 

that could correspond to the shear stress 

produced within the boundary layer along the 

cavity's wall. This suggests existence of back flow 

under the shoulder cavity, because it has the right 

sign and approximately the right position within 

the boundary layer thickness. When moving 

further to point E, the peak near the cavity's wall 

is still having the same strength while the second 

peak has disappeared. The near wall peak has 

the right sign to be able to stem from production 

within the boundary layer and has also the right 

extension. From this development one could 
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argue that the boundary layer along the cavity 

produces a reasonable shear stress. If that was 

true and would continue downstream of the 

boundary layer along the cavity's wall, then at 

point A, we would expect a negative <u'w'>, since 

the main production term in the balance equation 

for u'w' is negative P13 xw ∂∂ /=-<u'w'> < 0. The 

result shown in Fig.5c confirms this expectation. 

 
Fig. 6: Time-averaged wall-normal velocity (<w>) 

and Reynolds normal stresses along DG. 
 

 Next, we concentrate on the development 

of the shear layer bounding the cavity along line 

DG. This shear layer drives the vortex inside the 

cavity by exchanging momentum by viscous and, 

more importantly, the turbulent stresses. In Fig.5c 

we plotted already the turbulent shear stress 

<u’w’> at two streamwise positions within the 

shear layer. Directly at the cusp above the cavity 

(z > 0), there is the shear stress profile coming 

from the boundary layer upstream which has 

negative sign and a thin positive peak of <u’w’> 

just beneath the cusp coming from the cavity. At 

0.18D downstream, the thin shear layer has 

produced a second peak with negative <u’w’> 

which is much stronger than the two peaks that 

are observable at the separation from the cusp. 

The instabilities within the shear layer are excited 

very fast which is certainly the result of the 

returning turbulence convected by the vortex 

inside the cavity. The streamwise developments 

of the wall normal velocity component and the 

Reynolds normal stresses are plotted in Fig.6. 

Just after the cusp, the normal component is 

positive as a consequence of the finite angle of 

the cusp. As the shear layer widens, the normal 

velocity turns its sign and transports fluid towards 

the cavity. As the impingement edge is 

approached it changes sign again which can be 

the result of the fluid moving away from the 

stagnation point. The normal Reynolds stresses 

undergo a fast transition towards a plateau that 

lasts until the region over the impingement edge 

is reached. The velocity difference in the shear 

layer could be estimated as large as 

approximately su  = 0.7 ∞u . With that in mind, one 

would expect from plane mixing layer the R.M.S. 

in the range of 0.12 ∞u , 0.10 ∞u  and 0.08 ∞u  for 

the streamwise, the spanwise and the wall-normal 

velocity, respectively. The R.M.S values are close 

to this expectation. This development of the 

boundary layer into a plane-mixing layer only 

takes 1.5 0δ , the boundary layer thickness at the 

cusp. This plane mixing layer is disrupted after 

the peak of the wall-normal velocity which is close 

to the shoulder of the cavity. 

 Due to limited space, the flow mechanism 

is summarized as follows. The flow can be 

divided into three zones namely; (i) shear layer, 

(ii) stagnation point, (iii) vortex core and (iv) 

boundary layer along the cavity wall. The shear 

layer (i) above the cavity is a highly active region 

that is excited by both, the turbulent boundary 

layer coming from upstream and the fluctuations 

coming from inside the cavity. The fluctuations 

reach approximately standard values of a mixing 
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layer after a strong amplification immediately after 

separation from the cusp of the cavity. The low 

pressure in the shear layer entrains fluid from 

inside the cavity and thus contributes to the 

rotational motion of the vortex cell whose central 

(iii) part is almost a solid body rotation in the 

mean. 

 

 

 

 
Fig 4: Time-averaged profile inside the cavity: 

tangential velocity along EF (a) and AB (b), wall-

normal velocity along EF (c) and AB (d).  

 

 

 

 
Fig 5: Reynolds stresses inside the cavity: normal 

stresses at EF (a) and AB (b) and shear stresses 

at EF (c) and AB (d). 

 

The stagnation point (ii) generates turbulent 

kinetic energy (Fig.7) and drives high-energy 

packets of fluid into the cavity which seems to be 

responsible for the largest contribution to the 

rotational motion in the core. These energy 

packets are forming the boundary layer (iv) along 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(d) 

(c) 
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the cavity’s wall, even though its characteristics 

are not yet reach those of the canonical one.   

 
Fig 7: Spatial distribution of the production of 

turbulent kinetic energy. 
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