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Abstract

This paper describes the flying characteristics of the sliders in HDD under ambient temperature
change. The slider bearing is a self acting with straight rails for the magnetic storage in hard disk drives.
The modified Reynolds equations based on a linearized version of the Bolzmann equation were
formulated. Numerical scheme based on the finite difference method and multi-grid multilevel technique
with Newton’s method were implemented to obtain the flying characteristics of ultra-thin head sliders in
steady state. Under ambient temperature change, the pressure profile and flying height were calculated
with varying rail length, rail width, and load and disk velocity. The ambient temperature changes are
significantly affecting the performance characteristics of the sub-ambient pressure sliders air bearing in
hard disk drives.
Keywords: Flying Characteristics, Air Slider Bearings, Finite difference technique, Multi-grid-multi-level

Techniques.



1. Introduction
In order to increase the recording density and
interface performance of magnetic hard disk
drives (HDD), it is essentially to minimize spacing
between the slider and disk surface at the trailing
edge. Presently, the flying height for commercially
available disk drives with a recording density of

100 Gb/in® is on the order of 10 NM [1].

The air bearing slider utilizes the combination
of a thin lubricating air film theory using the finite
difference method [2] and adaptive multi-grid
method [3] to provide a pressure distribution and
flying height. The objective of these studies is to
analyze the phenomenon of each parameter on

minimum flying height by simulation.

2. Theoretical analysis

Analyzing lubrication theory, Reynolds
equation has been utilized to calculate pressure
distribution and flying height. In this study,
Reynolds equation is established by combination
between Navier-Stokes equation and Continuity
equation by the hypothesis that the surface of air
bearing and disk are smooth. Lubrication fluid is
Newtonian, laminar flow, constant viscosity, ideal
gas and isothermal condition. Inertia force and
body force of fluid have been neglected because
film thickness is very small and the slip condition
has been considered.

The slip models currently used to predict
pressures in head-disk interface in HDD are the
first-order slip model [4], second-order slip model
[5], 1.5-order slip model [6] and Boltzmann-
Reynolds model [7][8]. The governing equation for

each of these models and the no-slip model can
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be written in the dimensionless form as equation
(1) 81
aix(QZ—ij+/lza%(Qg—sj=Aaix(PH) (1)
While Q:¢(p,H)pH3 and ¢(p,H) is Poiseuille
flow factor which takes the Boltzmann-Reynolds
model as shown in equation (2) and A, A, Aand
Aare the constants that depend on Kn/PH .
2 3
9(P.H)=A Ao oa( ) +a(mr] @
Film thickness equation
The equation of flying height is analyzed from
the surface of air bearing of head slider that can
be written in dimensionless form as equation (3).
H=Hy+(1-X)(Hg—Hy)+3 3)
When : § is depth parameter that depends on its
position on the surface.

Equation of motion

There are two degree of freedom in the
motion of head slider, that is force balance and
moment balance, which are necessary to be
balanced. The dimensionless force balance

equation is

(P-1)dXdY =F, )

S D
O ey

N

The dimensionless moment balance equation is

X (P-1)dXdY = X, F, ()

—_—n e
O ey

N

After that, finite difference and Newton-
Raphson method were utilized with the boundary

condition in equation (6).

P(O,Y):P(l,Y):P[X ,%jzptx ,—%)zl (6)
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Fig. 1 Simulation model of Air Bearing Surface

3. Simulation results
In this simulation, the static characteristics of
the taper flat slider are obtained theoretically. The
taper flat slider is 2.025 X 1.525 (mm.) as shown

in table 1

Table 1 Dimension of taper flat slider

DESCRIPTION TAPERED - FLAT
L(mm) 2.025
B(mm) 0.5

W (mm) 1.525
hye (zm) 2.795
Lo (2m) 0.184
f,(MN) 735
x,(mm) 1.081
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3.1 Influence of the change in ambient
temperature on flying characteristics of the
air slider bearing.

In this study, the flying characteristics of taper
flat slider were calculate for varying the slider
geometry and operated at various ambient
temperature conditions; 5, 25 and 45 °C as show
in fig. 2, 3, 4, 5 and 6.

Fig.2 shown the flying height at leading edge
and the flying height at tailing edge increased
significantly when increase the rail width, disk
velocity and ambient temperature.

Fig.3 shown the flying height at leading edge
decreased but the flying height at tailing edge
increased when increases the taper length. At low
disk velocity, the flying height at tailing edge is
almost constant and the flying height increased
as the both disk velocity and ambient temperature
increased.

Fig.4 shown the flying height at leading edge
and the flying height at tailing edge decreased
when increase taper angle and the flying height at
the leading edge and the flying height at tailing
edge increased as the both disk velocity and
ambient temperature increased.

Fig.5 shown the flying height at leading edge
increased but the flying height at tailing edge
decreased when increases the suspension
position. At low disk velocity the flying height at
tailing edge is almost constant and the flying
height increased as the both disk velocity and
ambient temperature increased.

Flying height at leading edge and the flying
height at tailing edge decreased when increase
suspension preload and the flying height at

leading edge and the flying height at tailing edge
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increased with both increasing disk velocity and
increasing the ambient temperature as shown in
Fig. 6.

3.2 Influence of the change in ambient
temperature and current source on flying
characteristics of air slider bearing.

In this study, the flying height characteristics
of taper flat slider were calculate for varying the
slider geometry and operated at various ambient
temperature and current source condition.

Fig. 7 shown the increase of flying height at
leading edge and the flying height at tailing edge
when increased rail width and disk velocity. The
flying height at tailing edge increased but the
flying height at leading edge decreased under the
supply current source at 0 mA and 13 mA at
read/write device for increasing rail width and
increasing the ambient temperature, the flying

height significant increased.
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Fig. 2 Variation of flying height with varying the
rail width for difference ambient temperature

change
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Fig. 3 Variation of flying height with varying the
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Fig. 5 Variation of flying height with varying the

suspension position for difference ambient

temperature change
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Fig. 6 Variation of flying height with varying the
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Fig. 7 Variation of flying height with varying the rail
width for difference current source on read/write

device at 25 °C

4. Conclusion

(a.) Numerical scheme based on the finite
difference method and multi-grid multilevel
technique with Newton’s method were
implemented to obtain the flying
characteristics of ultra-thin head sliders in
steady state.

(b.) The flying height increase as the ambient
temperature increased due to the increase
in air viscosity.

(c.) The flying height at leading edge and the
flying height at tailing edge increased with
the increasing ambient temperature by 5,
25 and 45 °C

(d.) The slider geometry is the significant effect

on both flying height and pressure profile.
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6. Nomenclature

Q Poiseullie flow factor
P Normalized pressure, P = p/ P,
p Pressure
P, Atmosphere pressure
A Length-width ratio, A = L/VV
L Slider length

Slider width

Bearing number, A = 6/10UL/ p,h?

W

A

Hy Gas viscosity
U Disk velocity

ha Reference film thickness

X,Y Normalized Cartesian
X =x/L,Y=y/W

X,y Cartesian coordinates

coordinates,

Kn  Knudsen number, Kn= ﬂ“a/ha

H Normalized film thickness, H = h/h,
H.;  Normalized trailing edge, Hy, =h, /h,
H, Normalized leading edge, H, =h, /h,
h Film thickness

hr Trailing edge

h,d Leading edge

o Depth parameter

K Normalized Load, F, = f,/P,LW

f, Load
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XG Normalized support position,
Xe =%, /L

Xq Support position

A Mean free molecular path of gas,
A, =64nm
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