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Abstract 
 Failures of rolling element bearing can cause serious downtime. Early stage bearing defects 
require a special detection method. When localized defect occurs, the periodic impulse which relates to 
bearing defect location appears in machinery vibration signal. High frequency resonance technique 
(HFRT) or envelope analysis is used in conjunction with complex Morlet wavelet because it resembles to 
mechanical impulse. This detection method demodulates defect-related low frequency part from system-
natural-frequency-related high frequency part. However a proper indicator for optimal center frequency 
and bandwidth is needed to obtain promising detection result. 

This study proposes an indicator that picks optimal Morlet wavelet that gives the highest ratio of 
the sum of harmonics family that has maximum value to the arithmetic mean of envelope spectrum in a 
specified range. In simulation study, it is shown that the proposed parameter can detect bearing defect 
not less than 97% from signal of various natural frequencies and damping ratios up to signal to noise 
ratio of -15 dB. The real bearing experiment was conducted with outer race defect under various defect 
sizes, radial loads and shaft speeds. It is shown that the indicator can successfully detect all cases of 
defect on outer race if line resolution in envelope spectrum is chosen properly. 

 
Keywords: Rolling Element Bearing Defect Detection, Wavelet Filtering, Envelope Spectrum, Morlet 
Wavelet, Optimal Wavelet Indicator. 
 

1. Introduction 
 Rolling element bearings are vital for 
rotating machinery. Bearing failures contribute 
major cause of machinery breakdown resulting 
in costly downtime. To prevent that, bearing 
condition monitoring methods have been 
developed. Vibration monitoring has been widely 
used since it reveals bearing failures more  

efficiently than other methods. [1]  
 Typical failure mode of rolling element 
bearings are usually caused by localized defect 
that occurs when a small piece of material is 
dislodged from bearing contact surface, mostly 
due to fatigue under cyclic contact stress [2]. 
When mating contact element runs pass this 
defect, wide band impulses are generated 
periodically at bearing defect characteristic 
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frequency. Hence, the vibration signal of 
defective bearings can be viewed as an impulse 
response of this impulse train. This amplitude 
modulated signal consists of defect characteristic 
frequency which acts as low frequency 
modulator and bearing-support system natural 
frequency as high frequency carrier [3, 4]. This 
frequency tells us which part of the bearing the 
defect is on. Unfortunately, the energy of this 
signal spreads across wide frequency range, 
and it is buried in noise or other unrelated 
signal, especially at low frequency where other 
mechanical vibrations dominate [5]. 
 To overcome this problem, many 
methods have been developed. One of most 
widely recognized method is high frequency 
resonance technique (HFRT) or envelope 
analysis [1, 6] which is a combination of 
bandpass filtering, enveloping and spectrum 
construction. This method provides periodic 
excitation extraction and defective signal 
demodulation. However, this method requires 
selection of filter frequency band in order to 
obtain effective result [7]. 
 Recently, wavelet-based filter have been 
applied in bearing fault detection in conjunction 
with HFRT due to its flexible time-frequency 
resolution and transient signal detection 
capability. Among many type of wavelets, Morlet 
wavelet is commonly used due to its impulse-like 
feature [3, 8, 9]. But, similar to ordinary 
bandpass filter, it also requires proper 
parameters (center frequency and bandwidth) in 
order to obtain good result. To achieve these 
optimal parameters, some indicators have been 
proposed such as Shannon entropy [3, 8] or 
kurtosis of envelope of filtered signal [9]. But 

both indicators do not take harmonic feature of 
envelope spectrum, which is strongly related to 
impulse train excited by localized defect, into 
account. Thus, this paper proposes a new 
indicator for Morlet wavelet parameter 
adjustment in envelope analysis that takes 
harmonics in envelope spectrum into account. 

2. Review on signal processing 
2.1 Wavelet transformation 
 The wavelet is obtained from a function 
𝜓 𝑡  by translation and scaling [10] as: 
 𝜓 𝑎 ,𝜏  𝑡 =

1

 𝑎
𝜓  

𝑡 − 𝜏

𝑎
  (1) 

Where 𝑎 is scale and 𝜏 is translation and 𝜓 𝑡  is 
“mother wavelet”. The wavelet transform of a 
finite energy signal 𝑥 𝑡  is the convolution of 
𝑥 𝑡  with conjugate of Eq. (1) or “daughter” 
wavelet as: 
 𝑊𝑇 𝑎, 𝜏 =

1

 𝑎
 𝑥 𝑡 

1

 𝑎
𝜓∗  

𝑡 − 𝜏

𝑎
 

∞

−∞

𝑑𝑡 (2) 
Where 𝜓∗ 𝑡  is complex conjugation of 𝜓 𝑡 . 
 Since main interest in bearing defect 
detection is to extract impulse-like features in the 
signal, the Morlet wavelet is used due to it is 
more resemble to mechanical impulse than other 
mother wavelet [11]. The Morlet wavelet can be 
defined in time domain as complex sinusoidal 
enveloped by Gaussian function [9] 
 𝜓 𝑡 =

𝜎

 𝜋
𝑒−𝜎

2𝑡2
𝑒𝑖2𝜋𝑓0𝑡  (3) 

Where 𝜎 and 𝑓0 are wavelet shape factor and 
center frequency, respectively.  
 The Fourier spectrum of Eq. (3) can be 
written as: 
 Ψ 𝑓 = 𝑒− 𝜋

2/𝜎2  𝑓−𝑓0 
2
 (4) 

 Since wavelet transform can be written 
in form of Fourier transform [10], Eq. (2) can be 
written in frequency domain as: 
 𝑊𝑇 𝑎, 𝜏 =  𝑎 ∙ 𝐼𝐹𝑇 𝑋 𝑓 Ψ∗ 𝑎𝑓   (5) 
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Where 𝑋 𝑓  and Ψ 𝑓  are Fourier spectrum of 
𝑥 𝑡  and 𝜓 𝑡 , respectively. And 𝐼𝐹𝑇 denotes 
the inverse Fourier transform. Eq. (5) indicates 
that wavelet transform can be considered as 
filtering operation where 𝜓 𝑡  acts as filters that 
has center frequency at 𝑓0 and its bandwidth is 
controlled by 𝜎. Since definition of bandwidth is 
open, half power bandwidth is defined as: 
 

𝛽 =
 2 ln 2

𝜋
𝜎 (6) 

Eq. (6) dictates that power spectrum at the ends 
of the passband  𝑓0 − 𝛽/2,  𝑓0 + 𝛽/2 , are half of 
its own maximum value. By substituting Eq. (6), 
Eq. (4) can be rewritten as:  
 Ψ 𝑓 = 𝑒− −2 ln 2/𝛽2  𝑓−𝑓0 

2
 (7) 

Hence, filtered signal from Morlet wavelet that 
has center frequency 𝑓0 and bandwidth 𝛽 can be 
obtained by using Eq. (5) and Eq. (7). 
 𝑊𝑇 𝑓0,𝛽 = 𝐼𝐹𝑇 𝑋 𝑓 Ψ∗ 𝑓   (8) 

Note that Eq. (8) makes use of the inverse fast 
Fourier transform (IFFT) subroutine in MATLAB 
available. An example of Morlet wavelet in both 
time and frequency domain are shown in Fig. 
1(a) and 1(b), respectively. 

 
Fig. 1 Morlet wavelet (𝑓0= 4000Hz, 𝛽 = 1000Hz) 

in: (a) time domain (both real and imaginary 
part), (b) frequency domain 

2.2 Envelope analysis  
 Since bearing defect signal can be viewed 
as bursts of exponentially decaying sinusoidal 
vibration at system resonance frequency, i.e. 

impulse train response of underdamped system. 
Envelope analysis allows us to extract bearing 
defect characteristic frequency from the signal 
using following steps [6]. First, apply bandpass 
filter to the signal 𝑥 𝑡  in Fig. 2(a) around the 
natural frequency of the system shown in Fig. 
2(b) using Eq. (8), to obtain the filtered signal 
𝑥𝑓 𝑡  (real part) shown in Fig. 2(c). After that, 
envelope is applied to the filtered signal as in 
Fig. 2(e). Since filtered signal obtained from Eq. 
(8) is analytical signal, therefore modulus of this 
signal provides the envelope 𝑆 𝑡  of the filtered 
signal [9]: 
 𝑆 𝑡 =   𝑅𝑒 𝑊𝑇 𝑓0,𝛽   

2
+  𝐼𝑚 𝑊𝑇 𝑓0,𝛽   

2 (9) 
 At this point, it is seen that Fig 2(e) is 
an envelope outline of Fig. 2(c). This allows 
impulse-related low frequency part to be 
demodulated from natural-frequency-related high 
frequency part. Lastly, Fourier spectrum S 𝑓  of 
𝑆 𝑡  is obtained. If bearing defect occurs, it can 
be noticed by distinct peaks at defect 
characteristic frequency and its harmonics as in 
Fig. 2(f). Note that Fig. 2(b) and 2(d) are Fourier 
spectrum of Fig. 2(a) and 2(c), respectively. 

3. Review on signal modeling of rolling 
bearing element bearing with localized defect 
 Impulse is generated when mating 
contact surface runs pass the defect. Impulse 
causes wideband excitation to the bearing-
support structure, resulting in rise of the natural 
frequencies peak in the spectrum. In case that 
transmission path of vibration between location 
that impulse is generated and location of 
accelerometer remains the same (defect occur 
on bearing outer race), the vibration signal 𝑥 𝑡  
can be modelled as follow [12]: 

𝜓 𝑡 : 𝑓0=4000Hz, 𝛽 =1000Hz (a) (b) Normalized  Ψ 𝑓  2 
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𝑥 𝑡 =  𝐴𝑘ℎ 𝑡 − 𝑘𝑇𝑟 

∞

𝑘=0

+ 𝑛 𝑡  (10) 

 
Fig. 2 Envelope analysis: (a) signal 𝑥 𝑡 , (b) 

spectrum  X 𝑓  , (c) filtered signal Re 𝑥𝑓 𝑡   using 
Morlet wavelet in Fig 1, (d) spectrum  X𝑓 𝑓  , (e) 
envelope 𝑆 𝑡  and (f) envelope spectrum  S 𝑓   

Where 𝐴𝑘 is the kth defect impulse intensity, 𝑛 𝑡  
is noise and ℎ 𝑡 − 𝑘𝑇𝑟  is impulse response 
function that has period of excitation 𝑇𝑟  
corresponding to defect characteristic frequency. 
The impulse response of a linear underdamped 
second order system which can be described as: 
 

ℎ 𝑡 =
1

𝑚𝜔𝑑
𝑒
− 

𝜉𝜔𝑑

 1−𝜉2
 𝑡

𝑠𝑖𝑛𝜔𝑑𝑡 (11) 

Where m is mass of the system, 𝜉 is damping 
ratio and 𝜔𝑑  is damped natural frequency of 
bearing and support structure. Fig. 3(a) and 3(b) 
show an example of modelled signal and real 
outer race defect bearing signal, respectively. 
 In case of inner race and rolling element 
defect, effect from transmission path and load 
zone must be considered. Impulse strength 
function must be added to Eq. (10). However, 
the modified equation becomes complicated and 
some parameters are unknown. Hence, this 
paper will only use the model from Eq. (10) in 

the simulation part. Refer to [13] for more detail 
in inner race and roller defect. 

 

 
Fig. 3 (a) modelled signal, (b) real outer race 

defect bearing signal 

4. Indicator for Morlet Wavelet Filter 
Adjustment 

 In this paper, parameter that takes the 
distinction of defect characteristic frequency and 
its harmonics into account is proposed. The key 
idea of this indicator is to find a set of 𝑓0 and 𝛽 
that gives maximum ratio between the maximum 
value of sum of peak that falls within the 
predefined range (from ball spin frequency (BSF) 
to ball pass inner race frequency (BPIR)) and its 
harmonics to the arithmetic mean of the 
envelope spectrum. Hence the higher indicator 
value, the more distinct of peak and its 
harmonics in envelope spectrum over the noise 
floor. Details of procedure are given as below: 
(1) Thresholding: threshold is set to be 1 

standard deviation above the mean of 
envelope spectrum  

(2) Peak identification: identify all peak of 
envelope spectrum that exceed threshold. 
Then find fundamental peaks that have 
frequencies fall within BSF and BPIR. 

(3) Harmonics family identification: classify 
groups of harmonic family in envelope 
spectrum. Calculate ratio between sum of 

 X 𝑓   

Re 𝑥𝑓 𝑡   

 

 X𝑓 𝑓   
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each fundamental peak and its harmonic 
peaks to the mean defined in (1). The 
maximum value is used as the indicator of 
this 𝑓0, 𝛽 set. 

(4) Vary 𝑓0, 𝛽 throughout the preset 𝑓0, 𝛽 matrix. 
Repeat process from (1) to (3) again. A set 
of 𝑓0 and 𝛽 that yields maximum indicator is 
the optimal set. 

 The overview of steps used to obtain 
optimal wavelet parameter 𝑓0 and 𝛽 by using 
proposed indicator is shown in Fig. 4. 
 Since process (1) to (4) work along with 
wavelet transformation and bandpass filtering, 
some additional constrains must be taken into 
account 
(1) Mother wavelet must have zero mean.  
 Ψ 0 =  𝜓 𝑡 

∞

−∞

𝑑𝑡 = 0 (12) 

Actually, Morlet wavelet does not strictly satisfy 
Eq. (12). However Eq. (12) is very small when 
𝑓0/𝛽 is large enough, i.e. 𝑓0 𝛽 ≥ 3.5 [9]. Hence, 
this paper states that 𝑓0 𝛽 ≥ 3.5  
(2) The upper cut-off frequency of Morlet 

wavelet filter must satisfy sampling theorem 
 

𝑓0 +
𝛽

2
<
𝑓𝑠
2

 (13) 

Where 𝑓𝑠 is sampling frequency of the signal. 
(3) The lower cut-off frequency should eliminate 

interfering effects from low frequency 
vibration.  

Where 𝑓𝑟 is shaft rotational speed and 𝑁 is 
positive integer. 𝑁 is chosen to be 20. 
(4) The bandwidth of the filter should be wide 

enough to cover some sidebands generated 
by impulse train as shown in spectrum of 
Fig. 2(a). Hence the bandwidth is chosen as: 

 𝛽 ≥ 500 Hz (15) 

 
Fig. 4 The overview of steps used to obtain 
optimal wavelet parameter 𝑓0 and 𝛽 by using 

proposed indicator 

 Fig. 5(a) shows an example of simulated 
signal and Fig. 5(b) is the corresponding Fourier 
spectrum of the given signal. Fig. 5(c) shows the 
contour of the indicator value of the given signal 
from the matrix of 𝑓0 and 𝛽. The optimal set of 𝑓0 

 
𝑓0 −

𝛽

2
> 𝑁 × 𝑓𝑟  (14) 

Obtain envelope spectrum 

of signal using preset 𝑓0, 𝛽 

Vibration Signal 

𝑓0, 𝛽 must satisfy 
all constrains 

Calculate mean and 
standard deviation of 
obtained envelope 

spectrum 

Thresholding. Identify all 
peaks that pass the 

threshold 

Calculate with 
specified range 

Identified harmonics of 
each fundamental 

frequency detected 

Specify range for 
fundamental 
frequency 

Calculate proposed 
indicator for each harmonic 

family 

(Sum of all family 
harmonic)/mean 

Maximum indicator for this 

𝑓0, 𝛽 set 

Find 𝑓0, 𝛽 set that yields maximum indicator 
value 

Optimal envelope spectrum 

Compare fundamental frequency in spectrum 
with defect frequencies 

Diagnose whether bearing defect exists or not 
and determine the fault types 

Find harmonic family that 
gives maximum indicator 

A
ll 

p
re

s
e
t 
𝑓 0

,𝛽
 



AMM10 
The Second TSME International Conference on Mechanical Engineering 

19-21 October, 2011, Krabi 
 

 

and 𝛽 is shown by the tip of the arrow 
corresponding to the maximum value of the 
proposed indicator. Fig. 5(d) is the envelope 
spectrum of the filtered signal. It clearly shows 
defect frequency and its harmonics. Note that 𝑓0 

of the optimal parameters coincides with the 
damped natural frequency of the signal as seen 
in Fig. 5(b) 

Fig. 5 Example of the envelope spectrum:      
(a) test signal, (b) spectrum, (c) contour of 
indicator value for each set of 𝑓0, 𝛽 and (d) 

envelope spectrum at optimal indicator 

5. Simulation study 
 In simulation study, simulated defect 
signal obtained from Eq. (10) and (11) is 
normalized to make its RMS value equals to 1. 
Then 100 sets of white noise scaled to the 
desired signal to noise ratio (SNR) are added to 
the simulated signal to obtain noisy signals used 
in the study. After that, sets of 𝑓0, 𝛽 are used to 
construct envelope spectrum for the indicator 
value calculation. All of essential parameters 
used in simulation study are listed in Table 1. 
 For each set of the signal at given SNR, 
there are 100 noisy signals for indicator 
effectiveness evaluation. The detection result 
can be categorized into 4 categories which will 
be mentioned as Cat 1 to Cat 4 in Fig. 6 as 
stated below: 

(1) The optimal envelope spectrum has 
fundamental frequency of harmonic family 
that gives maximum indicator value 
coincides with simulated defect frequency 
(tolerance is set to be half of envelope 
spectrum resolution, i.e. 4 Hz). Furthermore, 
damped natural frequency (𝑓𝑑 ) of simulated 
signal falls within ±250 Hz around 𝑓0. An 
example is shown in Fig. 5(d) 

(2) Almost everything is the same to (1) but 𝑓𝑑  
falls out of ±250 Hz around 𝑓0. 

(3) The optimal envelope spectrum does not 
have fundamental frequency of harmonic 
family that gives maximum indicator value 
coincides with simulated defect frequency. 
And 𝑓𝑑  of simulated signal falls within ±250 
Hz around 𝑓0 

(4) The optimal envelope spectrum does not 
have fundamental frequency of harmonic 
family that gives maximum indicator value 
coincides with simulated defect frequency. 
And  𝑓𝑑  also falls out of ±250 Hz around 𝑓

0
. 

Table 1 Parameter value in simulation study 

 Since the defect frequency is the main 
interest, the defect is detectable in category 1 
and 2 but it is undetectable in category 3 and 4. 
We will evaluate the effectiveness of the 

Parameter Value 
𝝃 0.2, 0.4, 0.6 

𝒇𝒏 = 𝒇𝒅/   𝟏 − 𝝃𝟐  4000, 6000, 8000, 10000 Hz 

𝑨𝒌 1 

𝑻𝒓 4.717 ms (corresponds to 212 Hz) 

Sampling time 15 µs 

Data point 4096 

𝒇𝟎 2000 - 10000 Hz with 500 Hz increment 

𝜷 
From 1000 Hz to 𝑓0 /3.5, 
3 equally spaced 

SNR  -10, -13, -15 dB 

(d) 

 X 𝑓   

𝑓0 = 5500Hz 𝛽 = 1036Hz Proposed Indicator (c) 

𝑥 𝑡 : 𝑓𝑛 = 6000Hz 𝜉 = 0.4 
 𝑓𝑑 = 5499Hz  SNR = −13𝑑𝐵 (b) (a) 



AMM10 
The Second TSME International Conference on Mechanical Engineering 

19-21 October, 2011, Krabi 
 

 

proposed indicator via these categories. Fig. 6(a) 
to (c) show effectiveness of proposed indicator 
in defect detection of signals at various sets of 
signal undamped natural frequency (𝑓𝑛 ) and 
damping ratio (𝜉) at -10, -13 and -15dB SNR. 
The bar graph is color coded according to each 
category mentioned earlier. The number of each 
category that printed on each color bar is the 
number detected in that category. Note that the 
number of detectable defect is sum of blue and 
red color in stacked bar graph. 

 

 

 
Fig. 6 Effectiveness of proposed indicator of 

simulation signals in various sets of 𝑓𝑛  and 𝜉 at: 
(a) -10dB, (b) -13dB and (c) -15 dB 

 It is seen in Fig. 6(a) to (c) that the 
proposed indicator can detect simulate bearing 
defect signal with more than 97% accuracy up to 
SNR =-15dB. The results have high repeatability 
regardless of signal undamped natural frequency 
and damping ratio which is preferable for 
bearing defect detection.  

6. Real bearing experiment 
 Real bearing experiment is performed to 
validate the model used in simulation study 
under various speeds (900, 1500, 2100 and 
2700 rpm), radial loads (102, 830 and 1558N) 
and defect sizes (nominal 0.11 and 0.17mm 
width). The radial load is calculated from loading 
spring deflection and geometry of loading 
mechanism) using test rig shown in Fig. 7. The 
defects are seeded on the outer race of SKF 
N305 ECP roller bearings (BPOR=4.25xrpm) in 
the entire bearing width using wirecut as shown 
in Fig. 8. Note that estimated basic rating life 
(L10h) of the toughest condition (2700 rpm, 
1558N) is 465,900 hours. However, the entire 
data collection process takes approximately 1.5 
hour, so it can be assumed that defect width is 
not increased. By using microscope, it is 
confirmed that defect width is not increased at 
detectable level during the experiment. Fig 9(a) 
and (b) shows an example of defect before and 
after the experiment using 50X digital 
microscope, respectively. Note that there is no 
noticeable difference in defect size between 
those two figures. 

 

 
Fig. 7 Bearing test rig (a) test rig (b) schematic 

diagram 

Signal Type  𝑓𝑛/𝜉  

Signal Type  𝑓𝑛/𝜉  

Signal Type  𝑓𝑛/𝜉  

(b) 

(c) 

(a) 

(a) 

(b) 

(a) 
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Fig. 8 Overview of defect on the outer race 

 
Fig. 9 Example of defect of 0.11mm nominal 
width (a) before and (b) after the experiment 

 Signals are sampled at 33kHz sampling 
frequency and 4096 sampling data per set and 
40 sets of measured signal from both vertical 
and horizontal direction are used in evaluation. 
Sample spectrums of the signal are shown in 
Fig. 10(a) and 10(b). Note that BPOR does not 
exist at low frequency spectrum. 

 
Fig. 10 Defective bearing spectrum at 1500 rpm 
(BPOR=106.3Hz): (a) spectrum of 1 of 40 set 

and (b) low frequency average spectrum 

 The signals are processed using the 
scheme mentioned in section 4 and the 
detection result criteria similar to section 5 
except only that, in real case, category number 
is reduce to 2 (detected or undetected) because 

natural frequency is not concerned. The result 
are shown in Fig. 11 

 

 

 
Fig. 11 Detection result (a) 102N, (b) 830N and 

(c).1558N 

 From Fig. 11, it is seen that the 
proposed indicator and detection scheme can 
detect the defect in majority. However, at speed 
of 2100 rpm, the defect cannot be detected. This 
is because BPOR at this speed is in the middle 
between adjacent lines in envelope spectrum, 
leading to erroneous result. This problem can be 
solved by double the sampling data then the 
resolution of the spectrum line is finer. BPOR 
can be detected without ambiguousness. The 
detection result after modification is shown in 
Fig. 12. It is seen that the modification gives 
successful detection result. 

7. Conclusion 
 In this paper, an indicator for optimal 
Morlet wavelet filter has been proposed. Based 
on the fact that envelope spectrum of periodic 

1X Pulley 
2X Pulley 

(a) 

(b) 

(a) 

(b) 

(c) 

(a) (b) 0.11 mm 

0.12 mm 

0.11 mm 

0.11 mm 

0.12 mm 

0.11 mm 
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Fig. 12 Detection result (after modification)  

(a) 102N, (b) 830N and (c).1558N 

impulse response function has harmonics of its 
excitation frequency. This indicator is the ratio of 
maximum value of sum of harmonic families that 
pass the threshold to the arithmetic mean of 
envelope spectrum in a predefined range. It is 
used to adjust Morlet wavelet center frequency 
(𝑓0) and bandwidth (𝛽). The optimal wavelet is 
the wavelet that yields maximum value of the 
indicator.  
 The proposed indicator is used to 
analyze the simulated defect signals of various 
damped natural frequency and damping ratio. It 
is shown that the proposed indicator achieves 
more than 97% defect detection accuracy up to 
SNR =-15dB regardless of signal damped 
natural frequency and damping ratio. 
 Lastly, real bearing experiment of outer 
race defect is performed. Analysis of bearing 
signal is shown that line resolution in envelope 
spectrum affects correctness of detection result. 
Hence, proper resolution should be selected to 

avoid the case that bearing frequency falls in the 
middle between two adjacent spectrum lines. In 
case of proper line resolution, the proposed 
indicator and detection scheme can detect the 
outer race defect correctly. 
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