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Abstract 
 This research proposes a CFD computer program for simulating the two-dimensional steady 
laminar flow based on finite volume method and triangular unstructured mesh. The numerical algorithm is 
developed based on SIMPLE algorithm for solving the Navier-Stokes equations, which are consisted of 
momentum equations and continuity equation in form of the pressure correction equation. The strategies 
of CDS and UDS schemes are respectively used to discretise the convection and diffusion terms of those 
governing equations. A lid driven cavity flow with Reynolds number of 100, 400, 1000, 3200 and 5000 is 
investigated to validate the developed computer program. The predicted results show that the in-house 
computer program gives good results compared with the reference data. 
Keywords: Computational Fluid Dynamics, Finite Volume Method, Triangular Unstructured Mesh, Cell-
Centered Grid  
 

1. Introduction 
  Flow phenomena play an important role 
in many engineering applications such as flow 
around the vehicles, the ventilation of air inside 
the buildings. An understanding in their 
behaviors makes the engineers to optimize in 
designing the systems. Unfortunately, the 
governing equation of flow is controlled by a 
very complex form of the Navier-Stokes 
equations that are impossible to completely 
solve by using any analytical methods to obtain 
an exact solution. As a result, the numerical 
method called CFD (Computational Fluid 

Dynamics) is taken into account for solving the 
flow problems by providing an approximation 
solution rather than those of using analytical 
method for the exact solution. Based on CFD 
concept, the flow domain will be divided into a 
finite number of the control volumes (CVs). The 
flow equations are then applied to all those CVs 
with the specified numerical schemes and hence 
a system of the algebraic equations is obtained. 
This can be solved numerically by means of 
computer programming. Generally, the technique 
of discretisation which is typically used in CFD 
process is the finite volume method (FVM). This 
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method is usually found as a strategy-based in 
developing of various popular CFD commercial 
software such as FLUENT, CFX, STAR CMM+, 
etc. Another shortcoming in solving the flow is 
the complexity of the domain shape which is 
usually found in many flow applications. With the 
complex geometry, it is very difficult or 
impossible to discretise such domain with using 
of regular mesh. As a result, the use of 
unstructured grid technique seems to be a 
suitable one of the choice here to overcome the 
problem. Due to the irregular shape of the 
unstructured mesh, however, the special 
treatments will be included in the solving 
process. 
  In the presented work, the numerical 
strategies and methodologies which are used to 
develop the computer program are described. 
The two-dimensional steady and incompressible 
flow is considered. The Navier-Strokes equations 
are discretised based on FVM and unstructured 
mesh. A technique of auxiliary node is adopted 
here to provide the orthogonal between the 
node-node connecting lines and the cell faces at 
the mid-face locations. The advantages of this 
technique are omitting of a cross diffusion term 
in the discretised equations resulting from the 
non-orthogonally effect and also the second 
order accuracy of the cell faces gradient 
calculation is preserved. The developed 
computer program has been validated with the 
driven cavity flow with Reynolds Number of 100, 
400, 1000, 3200, and 5000, respectively. The 
predicted results have been taken to compare 
with the numerical results predicted by FLUENT 
software. It is found that the presented results 
give good agreement with those reference data. 

2. The Numerical Strategies 
For the two-dimensional flow under the 

conditions of steady state and incompressible, 
the flow equations are governed by the 
momentum equations and the continuity 
equation. Those can be written in general form 
of the transport equation as follow: 

  .div V div grad S  
 

   
 

    (1) 

Where   denote the fluid density, V


 the 
velocity vector,  the flow variable,  the 
diffusion coefficient, and S the source/sink term. 
2.1 Finite Volume Method (FVM) 

FVM is the discretisation technique for 
transforming the governing equation in PDE form 
to be the equation in algebraic form. This 
method takes integration of the governing 
equation over each control volumes and then 
considers the balancing of the fluxes through the 
surfaces of the control volumes as followed: 
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Where d is the control volume. The volume 
integral (Eq. (2)) will be transformed to be 
surface integral by using Gauss’s theorem. 
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For the control volume with n faces, the Eq. (3) 
can be written as the summation of the 
properties for all those surfaces as follow: 
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All terms in Eq. (4) will be implemented with the 
specified numerical schemes in order to 
discretise those terms to be the algebraic 
equation. 
2.2 Discretisation of the Diffusion Term 

From Eq. (4), the diffusion term has 
been approximated by using the central 
differencing scheme (CDS). However, the 
second order accuracy of this scheme will be 
provided only if it is treated in the direction of 
normal-to-surface. As a result, the normal 
gradient calculation is taken in to account for 
approximating as follow: 
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From Fig. 1, it can be seen that the 
connected line between the centered nodes P 
and A is crossed the cell face line at point i. It is 
not lay through the mid-face location, point i. 
This condition leading to a degrading of the 
accuracy in computation the gradient at the CVs 
surface and also produces instability in the 
calculation as well.  

 

 
Fig. 1 Construction of the auxiliary nodes 

To overcome this shortcoming, the 
technique of auxiliary node is adopted here. The 
auxiliary nodes P and A can be easily 
constructed by drawing the three straight lines 

normally form the mid-faces inward the cell 
volume. The intersection between those lines is 
the location where the auxiliary node is placed. 
However, the technique of auxiliary node trend 
to fail if the twist angle of the connected line P-A 
with respect to the cell face is larger. This angle 
depends on the shape of the triangular cell. As a 
result, it is necessary to control the angles inside 
the triangular cell not exceed the range of 54-72 
degree. 
2.3 Discretisation of the Convection Term 

Physically, the convection term is 
directly related to the mass flux through the cell 
face. To obtain the mass fluxes at each cell 
faces, the normal velocity at the cell face must 
be found. In the presented work, the technique 
of the so-called Rhie-Chow interpolation is 
adopted to apply for those normal velocities at 
cell faces: 
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Obviously, it can be seen that the Rhie-
Chow interpolation is formulated in terms of the 
pressure gradient in normal direction (p/n), 
the average value of the velocity at cell face, the 
average value of the cell volume and the central 
coefficient which is obtained from the discretised 
momentum equations. 
2.4 Computation Procedures  

The SIMPLE algorithm of Patankar and 
Spalding (1972) is employed to solve these flow 
equations here. The calculation procedure is 
started with initializing the field variables with a 
small value except for the pressure that is 
initiated with zero. To initiate the SIMPLE 
calculation process a pressure field is guessed 
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and employed to sequentially solve the 
momentum equation to yield the velocity field. 
The velocity field is used to determine the mass 
fluxes through each cell face and subjected to 
the constraint that it must satisfy the continuity 
equation. In this step, the Rhie-Chow 
interpolation is used to determine the mass 
fluxes. The pressure-correction equation is 
performed by using the mass imbalance arising 
from the incorrect velocity field as the source 
term so that the pressure-correction field can be 
obtained at all nodes. Once the pressure-
correction field is know, the correct pressure and 
velocity fields can be obtained by updating them 
with the pressure correction.  

During the SIMPLE iteration, the discretised 
equation is numerically solved by using the point 
relaxation of Gauss-Siedel method. The number 
of sweep for each equation solved should not be 
the same. Only one sweep is sufficient for 
momentum but for pressure the 5 sweeps are 
required. All variables will be weighted with the 
appropriate values of under-relaxation factor to 
avoid the solution wiggle, in this work the value 
of 0.2 is used to stabilize all variables except for 
pressure the value of 0.01 is used. The 
algorithm for the simulation can be summarized 
as follows: 

(1) Initialize the velocity and pressure 
fields. 

(2) Solve the momentum equations to yield 
velocity fields. 

(3) Solve the pressure correction equation 
to yield pressure correction field. 

(4) Correct the pressure and velocity by the 
pressure correction. 

(5) Repeat steps (2)-(4) until the solution 
converges. 
3. Computational Strategies 

In this work, the developed computer 
program has been validated with the driven 
cavity flow. This flow is usually found as the 
simple problem for validating the computer code. 
The flow domain is constructed by a 1x1 m2 
square geometry as shown in Fig. 2. All 
boundaries are walls. The top wall is moved 
from left to right with the speed of 1 m/s and the 
rest walls are fixed. The cavity is full filled with 
the specified fluid. The fluid property is specified 
corresponding to the Reynolds number 
requirement. 

 
 

 
 
 
 
 

Fig. 2 Domain of a square cavity flow 
The considered domain described above 

has been generated by using Gambit software. 
The domain has been discretised to the finite 
number of control volumes based on triangular 
unstructured mesh. In the process, each edges 
of the domain are divided with the number of 20 
and the 902 CVs are obtained as shown in Fig. 
3. 

1 m 

1 m 
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Fig. 3 Mesh configuration 

4. Results and Discussion 
Determine the fixed-length velocity 

vectors of the flow with Re=1000 as shown in 
Fig. 4. It can be seen that the fluid in the upper 
zone of the cavity is forced to drive from left to 
right due to the shear driven effect of the lid. 
The flow comes down in the right zone and then 
goes up in the left zone like the circulation. In 
the figure, there are two patterns of the 
circulations in the flow field, the primary and 
secondary circulations. The primary circulation 
moves around the cavity core with the vertex 
center of (0.62, 0.65). The secondary 
circulations with a smaller size are appears at 
the two bottom corners of the cavity. 
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Fig. 4 Velocity vector of Re=1000 

 Figs. 5-9 display comparison of velocity 
on vertices from the presented work and Fluent 
software that the upper is a comparison of x-

velocity and the lower is a comparison of y-
velocity. The dashed-lines represent the 
presented results, and the solid lines come from 
Fluent. The presented results are satisfactory 
with Fluent software. 
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Fig. 5 Comparison of velocity at Re100 
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Fig. 6 Comparison of velocity at Re 400 
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Fig. 7 Comparison of velocity at Re 1000 
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Fig. 8 Comparison of velocity at Re 3200 
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Fig. 9 Comparison of velocity at Re 5000 

5. Conclusion 
 The research work presents the CFD in-
housed software. The software is developed for 
the two-dimensional steady state and 
incompressible flow. The numerical technique of 
FVM and triangular unstructured mesh are 
implemented. The upwind differencing scheme is 
employed to approximate the convection and 
diffusion terms. The Rhie-Chow interpolation is 
used to calculate the mass fluxes throughout the 
cell faces. The shear driven cavity flow is used 
as valuable tool for validating the developed 
software. The results shown that the developed 
software gives the satisfactory results compared 
with Fluent. 
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7. Annotation 
7.1 Symbols 

iA  area of face 
pa  cofactor of node P 

ê  unit vector of node P to A 
ˆ

in  outward unit normal vector of face 
p  pressure 

u  x-velocity 

v  y-velocity 

V


 velocity vector 

fv  normal face velocity 
  viscosity 

  volume 
  density 

7.2 Subscript 
f considering on face 
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