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Abstract 
 Bypass transition induced by freestream turbulence has been investigated using the direct 
numerical simulation (DNS) data of a zero-pressure gradient boundary layer. The DNS data are provided 
by T. A. Zaki’s group, at Imperial College London. The choice of the zero-pressure gradient boundary 
layer allows the study to focus on the effect of freestream turbulence exclusively. The boundary layer is 
subjected to 3.5% freestream turbulence at the inlet of the computational domain where Reynolds number 
based on 99% boundary layer thickness is 800, it undergoes a bypass transition further downstream and 
eventually becomes fully-turbulent toward the outlet of the domain. A proper orthogonal decomposition 
analysis of the fluctuating velocity field is carried out in order to objectively extract the most-energetic 
structures (coherent structures) in the boundary layer and their energy contents. The first five dominant 
structures carrying 10% of fluctuating energy are composed of important structures such as elongated 
streamwise streaks or perturbation jets, also known as Klebanoff modes, turbulent spots and traveling-
waves. The first five mode description is able to capture almost all the processes in bypass transition 
except the receptivity of the freestream turbulence into the boundary layer and the formation of Klebanoff 
modes. Future study in the seek of coherent structures associated with the receptivity and the formation 
of Klebanoff modes will be undertaken in order to obtain a compact description of bypass transition in a 
zero-pressure gradient boundary layer. 
Keywords: bypass transition, freestream turbulence, proper orthogonal decomposition (POD), coherent 
structures. 

1. Introduction 
 Under an elevated level of freestream 
turbulence (1% or more), the slow Tollmein-
Schlichting wave mechanism may be bypassed 
leading to a rapid bypass transition process. 

Since bypass transition has many important 
applications in engineering, many studies are 
devoted to study bypass transition (see review 
article [1]). The process of bypass transition may 
be divided into three interacting processes: (a) 
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the receptivity of freestream turbulence into the 
boundary layer (see review article [2]), (b) the 
formation and amplification of streaks - 
streamwise elongated streaky structures of 
alternating high and low fluctuating streamwise 
velocity, also known as Klebanoff or breathing 
modes, (see [3-5]) and (c) the breakdown of 
streaks (see [6]). Due to the non-linearity 
process of bypass transition, linear analyzes 
widely used in stability analysis may not be able 
to give a complete (and compact) description of 
the bypass transition process. Alternatively, 
description may be sorted out. 

In the light of coherent structures, 
complex transitional boundary layers may be 
decomposed into coherent motion or coherent 
structures [7] allowing the backbone of transition 
processes to be extracted out. Many techniques 
have been used to identify coherent structures in 
transitional and turbulent flows. The proper 
orthogonal decomposition (POD) is one of the 
most successful techniques to objectively extract 
the most energetic structures defined as 
coherent structures in the flow [7]. The POD and 
POD-based reduced-order models shed light on 
turbulence production mechanisms in many 
flows (see review in [7]) as well as transition 
process of natural transition in a zero-pressure 
gradient boundary layer [8,9] and recently 
bypass transition in a zero-pressure gradient 
boundary [10]. Unfortunately, the POD analysis 
in [10] is obtained from two-dimensional data of 
PIV in small regions in the boundary layer; a 
complete picture of bypass transition process 
from POD view point is still unrevealed. Study 
[11] performed the POD analysis of transition 
processes in a complex flow through a 

compressor cascade using the DNS of [12]. 
POD could capture Klebanoff modes and 
traveling wave modes in bypass transition on 
pressure side and those modes in separation-
induced transition on suction side. Nevertheless, 
such a complex flow needs more modes to fully 
describe the whole processes of bypass 
transition on a pressure side and separation-
induced transition on a suction side. 

The objective of this study is to identify 
coherent structures in bypass transition process 
of a zero-pressure gradient boundary layer by 
means of the POD. The study focuses on the 
analysis of three-dimensional data covering 
laminar, transition and turbulent regions in order 
to obtain a complete description of transition 
process in a unified framework. 
2. DNS of bypass transition in a zero-pressure 

gradient boundary layer 
 In this study, the database for the 
analysis is from DNS of bypass transition in a 
zero-pressure gradient boundary layer is 
provided by T. A. Zaki’s group, at Imperial 
College, London. The parameters in the DNS 
are similar to those reported in [13] and 
summarized here. Note that x, y and z denote 
streamwise, vertical and spanwise directions. All 
the velocity and length in the simulation are 
normalized by freestream velocity, U0, and 99% 
boundary layer thickness at the inlet of the 
domain, δ0. The flow domain is a rectangular 
box in Cartesian coordinate with the dimension 
of 600 δ0 x 40 δ0 x 30 δ0 in x, y and z, 
respectively Flow starts from perturbed Blasius 
velocity with the Reynolds number of 800 at inlet 
and is convected through the domain. Note that 
there is no leading edge of the plate in the 
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simulation (see more detail in [13]). Freestream 
turbulent intensity is 3.5% at the inlet plane with 
the integral length scale of 1.8 δ0. The 
simulation is based on a central difference 
formulation on a staggered grid. A fractional step 
algorithm is employed. Time integration is 
achieve by a semi-implicit time stepping scheme 
with third-order Runge-Kutta scheme for explicit 
terms and Crank-Nicolson scheme for implicit 
terms. Note that both convective and diffusion 
terms in a horizontal plane are treated explicitly 
whereas those in vertical direction are treated 
implicitly with  linearized convective terms to 
make them partially implicit (see more detail in 
[13]). The number of grid point is 2051 x 195 x 
195 in x, y and z, respectively. Note that the grid 
in x and z is uniform. The result is validated 
against DNS data from [13].  
 Skin-friction coefficient of the zero-
pressure gradient boundary layer is shown in 
Fig. 1. If the onset of transition is defined as the 
point of minimum skin-friction coefficient and the 
completion of transition is defined as the point of 
its maximum, then the DNS result shows that 
transition starts at x = 220 δ0 and completes at 
x = 550 δ0. Velocity perturbation from the mean 
velocity (x- and y-components) in Fig. 2 shows 
the presence of elongated streaks or Klebanoff 
modes starting from the pre-transitional region 
and continuing all the way through the transition 
region. Turbulent spots are also observed 
sporadically in space and time downstream of 
the streaks. Even though transition starts at 220 
δ0, turbulent spots become mature and can be 
clearly detected at around x = 320 δ0 . They 

merge further downstream and become fully 
turbulent. 

 
Fig. 1 Skin-friction coefficient: blue-solid line is 
from DNS result, green-dashed line and red-

dashed-dotted line are from empirical correlation. 

 
Fig. 2 Contours of streamwise (in (a)) 

and vertical (in (b)) velocity perturbation on the 
plane of y =  δ0 corresponding to y/δ ~ 0.25 in 
transition region. The figure shows the region x 

= 200 δ0 – 600 δ0 to highlight the transition 
process starting from x = 220 δ0 -  550 δ0. Light 
and dark shades are corresponding to negative 

and positive values, respectively. 
3. Proper orthogonal decomposition (POD)  

In order to extract coherent structures 
from a given ensemble of the given flow fields, 
the method of “snapshots” [14] is employed. 
Specifically, let V(x,t) be a given flow field and 
the ensemble {V(x,tk)}

N
k=1be a collection of such 

flow field at observation time tk for k=1,...,N  i.e. 
the flow “snapshots”. By decomposing the flow 
field into mean velocity, U0, and velocity 
fluctuation, u(x,t) i.e. V(x,t) = U0 + u(x,t), the 
eigenmode i may be defined as 
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Here, uk = u(x,tk) is the velocity fluctuation at 
time tk and wi

k are the components of the 
eigenvector W i derived from the eigenvalue 
problem 

CW W  (2) 
where, C is the spatial correlation matrix defined 
by 

1 i j

ijC u u d
N



  
. (3) 

The eigenvalue corresponding to each 
eigenvector from Eq. (2) represents the energy 
content in that eigenvector and eigenmode. Here 
u, v and w are velocity components in 
streamwise, vertical and spanwise directions, 
respectively. 

4. Results 
The POD is performed on the DNS data 

at every other grid point from the time span of 
8000 δ0/U0 (corresponding to 13.3 flow through 
time, Lx/U0) constituting 500 snapshots equally 
separated in time in the ensemble. The data are 
in a double precision format. The eigenvalue 
solver used is a double precision LAPACK 
eigenvalue solver for symmetric matrix. The 
convergence test and spectral analysis show 
that, at least, the first five eigenvalues and 
eigenmodes are converged to their true 
eigenvalues and eigenmodes; the result and 
discussion presented focus on those from the 
first five modes containing 10% of total energy. 

The normalized eigenvalues i.e. energy 
content in each mode relative to the total energy 
content in the flow are shown in Fig. 3. The 
most energetic structures (the first and second 
modes) contain 6% of energy considered to be 

relatively low compared to those eigenvalues of 
POD from other non-turbulent flows reported in 
the literature including a similar bypass 
transitional flow in [10]. The eigenvalues decay 
as the order of the eigenmode is increased but 
nevertheless the decaying rate is not as rapid as 
those in other non-turbulent flows reported in the 
literature including those in [10]. The low energy 
content and slow decaying rate of energy 
suggest that the flow in this study can be 
relatively complex. By comparing the energy 
content in the first few modes, the bypass 
transitional flow in this study may indeed be as 
complex as turbulent flows (see the energy 
content of the first few eigenmodes of turbulent 
minimal flow unit in [15] for example). 

 
Fig. 3 Energy distribution (normalized 

eigenvalues) of different POD modes. 
Relatively low energy contents in 

energetic eigenmodes and the slow decaying 
rate of eigenvalues in this study compared to 
those in [10] have to be viewed with caution. 
Despite that the flow in this study and those in 
[10] are similar, the POD in this study is 
performed with the whole three dimensional data 
covering laminar, transition and turbulent regions 
whereas the POD in [10] is performed with slices 
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of two-dimensional data covering small regions 
in pre-transition and low-intermittent regions. 
Three-dimensionality and diversifying kinematics 
and dynamics in laminar, transition and turbulent 
regions enrich the spatial structures and 
dynamics of the eigenmodes in this study. 
Clearly, low energy content and the slow 
decaying rate of the eigenvalues from this study 
are expected. 

The eigenvalues from the first two 
modes in Fig. 3 are nearly degenerate 
suggesting that these two modes are pairwise 
traveling waves. The eigenvalues from mode 3, 
4 and 5 are quite close to each other suggesting 
they contain more-or-less the same amount of 
energy. Spectral analysis of temporal modes i.e. 
the eigenvector from Eq. (2) and the 
visualization of spatial modes i.e. from Eq. (1) 
are further conducted to gain a better 
understanding in these eigenmodes. 

Fig. 4 shows the energy spectrum of the 
eigenmodes. It is noted that only the first four 
energetic frequencies of every eigenmode are 
shown in the figure. There are nine energetic 
frequencies associated with these five modes. 
However, only four of them contain significant 
amount of the energy in comparison with the 
rest of the frequencies. namely 0.0006 U0/δ0, 
0.0019 U0/δ0, 0.0021 U0/δ0, and 0.0043 U0/δ0 
corresponding to the time scales of 1600 δ0/U0, 
530 δ0/U0, 470 δ0/U0, and 240 δ0/U0, 
respectively. The frequency with the highest 
energy is 0.0019 U0/δ0 associating with every 
mode except mode 3. Each of the other three 
frequencies is also associated with at least two 
modes. Evidently, the dynamics of the modes 

are rather complicated and suggest active 
interaction among different eigenmodes. 

 
Fig. 4 Energy spectrum of dominant 

eigenmodes. 
Iso-surfaces of the velocity magnitudes 

of spatial modes are shown in Figs. 5 to 9, 
consecutively. To further appreciate inter-relation 
of these spatial modes, contours of the spatial 
modes on z- and y-planes are shown in Figs. 10 
and 11, respectively. It is noted that z-plane is a 
cut at z = 15 δ0 through the middle of the 
domain dividing the domain into equal left and 
right halves, and y-plane is a cut through y = 1 
δ0 corresponding to y  ~ 0.25 δ in transition 
region. The cut in y-plane underlines relative 
positions of these eigenmodes in vertical 
direction as well as streamwise direction 
whereas the cut in z-plane underlines elongated 
streaks around y  ~ 0.25 δ in transition zone of 
these modes. The spatial modes of these 
eigenmodes are quite complicated and cannot 
be clearly identified as isolated coherent 
structures reported in the literature.  

From the energy spectrum (Fig. 4), 
mode 1 and mode 2 are dominated by 
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frequencies of 0.0019 U0/δ0 and 0.0021 U0/δ0 
corresponding to the time scales of 530 δ0/U0 
and 470 δ0/U0, respectively. The spatial modes 
of mode 1 and 2 (Figs. 5, 6, 10 and 11) are 
indeed similar but shifted in downstream 
direction. The matching of two frequencies and 
spatial modes strongly implies that mode 1 and 
2 are traveling wave modes. The structures 
dominated in mode 1 and 2 consist of streaks 
and turbulent spots. Both wall streaks and lifted-
up streaks locating at the streamwise distance of 
350 δ0 – 450 δ0, which is in the neighbor where 
a turbulent spot is mature and merging with the 
neighbor spot (Fig. 2), are observed. Turbulent 
spots are detected at the location of 400 δ0 – 
550 δ0 in streamwise distance. The turbulent 
spots move at the speed of approximately 0.56 
U0 and spread at the angle of approximately 8o 
agree well with those reported in the literature 
(0.6 U0 and 8o, respectively [16]). However, the 
precise speed and spreading angle cannot be 
taken at this point as the boundaries of the 
turbulent spots are subjected to the level of iso-
surface of velocity magnitude defined. Note that 
from the energy spectrum, the dominant 
frequencies of mode 4 and 5 are also 0.0019 
U0/δ0 (Fig. 4). In fact, mode 5 is the most 
dominated one in this frequency. The spatial 
mode 5 in Figs. 9, 10 and 11 show that this 
mode is dominated by streaks in this region as 
well. Similarly, from Figs. 8, 10 and 11, one of 
dominated structures in the spatial mode 4 is 
streaks in this region. Clearly mode 1, 2, 4 and 
5 represent the evolution of streaks and their 
lifting-up at the frequency of 0.0019 U0/δ0. In the 
same time, mode 1 and 2 also represent the 

evolution of turbulent spot at the frequency of 
0.0021 U0/δ0.  

Mode 4 has another dominated 
frequency at 0.0043 U0/δ0 corresponding to the 
time scale 240 δ0/U0 (Fig. 4). This frequency 
coincides with one of the dominant frequencies 
of mode 3. Note that this frequency is close to 
the frequency of local turbulence in the boundary 
layer (0.0052 U0/δ0) and local freestream 
turbulence (0.0045 U0/δ0.). Thick structures 
originated slightly above the wall and extended 
up to almost the edge of the boundary layer 
present in the spatial modes of mode 3 and 4 in 
Figs. 7, 8, 10 and 11 (the streaky structure of 
mode 3 also present but they do not exhibit a 
traveling wave nature with mode 4; thereby 
excluding from the thick structures of interest 
and further discussion below). To be precise, 
mode 3 contains two thick structures locating at 
450 δ0 – 600 δ0 in streamwise direction, in the 
late transition region, and mode 4 contains 450 
δ0 – 500 δ0, once again in the late transition 
region. Evidently these two modes are shifted 
downstream and exhibiting another traveling 
wave structures. As they reside close to fully 
turbulent region and are dominated by frequency 
close to those of either local turbulence or 
freestream turbulence, the thick structures of 
mode 3 and 4 should represent the breakdown 
of streaks into turbulent spots itself at the 
frequency of 0.0043 U0/δ0. Note that the streaky 
structures in mode 4 have been inferred to be 
governed by frequency of 0.0019 U0/δ0; thereby 
excluding from these thick structures governed 
by 0.0043 U0/δ0.  
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The other dominant frequency of mode 
3 (Fig. 4) is 0.0006 U0/δ0 corresponding to the 
time scale of 1600 δ0/U0 which is relative long 
and almost three flow through time. By excluding 
thick structures in mode 3 governed by the 
frequency of by 0.0043 U0/δ0, the left-over 
spatial structure in mode 3 is streaky structure 
(Figs. 7, 10 and 11). This streaky structure 
seems to originated from pre-transition zone 
around 100 δ0 and extended up to 300 δ0 as 
clearly illustrated by the contour on z-plane 
shown in Fig. 11. This streaky structure is 
resembled to Klebanoff modes commonly 
reported in the literature. By carefully consider 
the energy spectrum in Fig. 4 and spatial modes 
in Fig. 11, mode 1 and 5 also have high-energy 
levels at this frequency of 0.0006 U0/δ0 and 
elongated streaky structures starting in pre-
transition to transition regions i.e. Klebanoff 
mode (mode 1 may not have a strong streaky 
structure compared with mode 3 and 5, 
nevertheless). Most likely mode 3, 5 and 1 
represent the evolution of Klebanoff modes at 
the frequency of 0.0006 U0/δ0 (but not how they 
are generated). 

 
Fig. 5  Isosurface of the velocity magnitude at 
the value of 0.005 of spatial mode 1. The left 

side of the domain is corresponding to x = 200 
δ0. 

Mode 1 – 5 also have high-activity in 
inlet region as seen in Figs. 10 and 11 (the 
actual levels of the contour can be not taken 
literally as the strength of streamwise velocity as 
the full reconstruction requires amplitudes of all 
the modes). They may be representing 
receptivity process of bypass transition but no 
solid conclusion can be drawn here. It is 
interesting to see if POD analysis will be able to 
provide physical insight into the role of low- and 
high-frequency vortical disturbances in bypass 
transition as found in [17]. Further analysis has 
to be carried out. 

 
Fig. 6 Isosurface of the velocity magnitude at the 
value of 0.0050 of spatial mode 2. The left side 
of the domain is corresponding to x = 200 δ0. 

 
Fig. 7 Isosurface of the velocity magnitude at the 
value of 0.0065 of spatial mode 3. The left side 
of the domain is corresponding to x = 200 δ0. 
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Fig. 8 Isosurface of the velocity magnitude at the 
value of 0.0065 of spatial mode 4. The left side 
of the domain is corresponding to x = 200 δ0. 

5. Conclusion and remarks 
The coherent structures of a bypass 

transition in zero-pressure gradient boundary 
layer are extracted from DNS data provided by 
T. A. Zaki’s group, at Imperial College London 
with similar parameter to [13] by means of the 
POD. The sparse distribution of the eigenvalues 
indicates that the flow is relatively complex and 
required many modes to accurately capture its 
dynamics. Nevertheless the first five modes are 
able to capture almost all the processes in 
bypass transition including the evolutions of 
Klebanoff mode (mode 3, 5 and 1), streaks and 
their lifting-up close to streak breakdown (mode 
1, 2, 4 and 5), streak breakdown (mode 3 and 
4), and turbulent spot (mode 1 and 2). Only the 
receptivity of the freestream turbulence into the 
boundary layer and the formation of Klebanoff 
modes are missed out from the first five modes 
description. 
 

Fig. 9 Isosurface of the velocity magnitude at the 
value of 0.0065 of spatial mode 5. The left side 
of the domain is corresponding to x = 200 δ0. 

Further analysis on higher-order modes 
and the reconstruction of the velocity from these 
coherent structure modes will have to be carried 
out. In particular, the search of modes 
representing the receptivity and the formation of 
Klebanoff modes has to be done in order to 
arrive at a true compact description of bypass 
transition in a zero-pressure gradient boundary 
layer. 
 

 
Fig. 10 Contours of streamwise-component of 

velocity of spatial modes on z-plane at z = 15δ0 
(mid-plane). 
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Fig.11 Contours of streamwise-component of 

velocity of spatial modes on y-plane at y =1 δ0 

corresponding to y/δ ~ 0.25 in transition region. 
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