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Abstract 

A space-time finite element method is presented for solving transient two-dimensional heat 
conduction problems.   The finite element formulation in this paper corresponds to the Galerkin weighted 
residual method.    The linear hexahedron is employed for interpolating the unknown quantities.   A 
computer program is developed to verify the concept by comparing the current numerical result with the 
analytical result. 
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1. Introduction 
The time stepping method is commonly 

combined with the finite element method for 
solving the parabolic partial differential equation 
which associated with time-dependent problems.  
Normally, the temporal approximation is 
performed by the finite difference method and the 
spatial approximation is accomplished by the 
finite element method.   Although this method is 
easy to implement, it can be expensive if steep 
gradients occur in the solution.  Additionally, the 
stability of the solution must be controlled as well 
as the problem of controlling the global error [2].   

In this paper, the space-time finite element 
method is proposed to solve the time-dependent 
temperature distribution in two-dimensional 
body.  The method of weighted-residual is 
employed with elements both in space and time 
coordinates [1].   This method characterized as 
the implicit time stepping method which the 
numerical result is unconditionally stable. 

 
2. Space-time element 

The heat conduction considered in this 
paper depends on both space co-ordinates and 
time.  The space-time domain is proposed as the 
product of spatial interval and time interval.   
This domain is divided into several time slabs as 
illustrated in Fig. 1.   The definition of time 
interval I is given by 

 
{ }TttI <<= 0:                       (1) 

 
where T  is the given time for numerical 
calculation and the spatial interval R can be 
described as follows 

 
{ }ByyAxxR <<<<= 0:,0:      (2) 

 
where A  and B  are the maximum sizes of 
material in x  and y directions, respectively.   For 
the nth space-time domain, the spatial domain is 
divided into en  elements, e

nR , e = 1,2,3,K , en .   
Therefore, the nth space-time domain nE  with 
boundary nΓ  are defined as   
 

nn IRE ×=                         (3) 

nn IS ×=Γ                         (4) 
 

where R  is the two-dimensional spatial domain 
with boundary S; nI  is the time interval between 

nt  and 1+nt . 
 
 

3. Numerical formulation 
3.1 Heat conduction equation 

The two-dimensional transient heat 
conduction in a solid body is governed by 
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where ( )tyxT ,,  is the unknown temperature that 
varies as the function of the spatial coordinates, x  
and y  , and time, t ; k   is the thermal 
conductivity of material; ρ  is the density of 
material; c  is the specific heat of material; Q  is 
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the volumetric heat generation rate.    Other 
important parameter need to be defined here is 
the thermal diffusivity, ck ρα = .   To complete 
the problem, the boundary and initial conditions 
are required.  These conditions are given in the 
form 
 

TT =  on 1S                          (6a) 
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( ) ( )yxTyxT ,0,, 0=                   (6d) 

 
where 321 SSSS ++= ; 1S  is the part of 
boundary on which T , temperature, is specified; 

2S is the part of boundary on which q , the flux 
of heat, is specified; 3S  is the part of boundary 
on which ( )∞− TTh , the convection heat transfer, 
is specified; h  is the heat transfer coefficient; ∞T  
is the temperature of ambient fluid; xl  and yl are 
the direction-cosine components in x  and y  
directions, respectively, of outward normal vector 
to the boundary.   
3.2 Finite element formulation 
  The weak form of the governing equation 
is developed by using a weighted residual 
approach called the standard Galerkin method.  
Eq. (5) is multiplied by e

iN , the interpolation 
function of element, and then the resulting 
equation is integrated over the element domain 

eE : 
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After applying the divergence theorem 

and integration by parts, Eq. (7) becomes   
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The temperature value and its gradients at 
any point of space-time element in Fig. 2 is 
interpolated by 
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Substituting Eqs. (9a) – (9b) into Eq. (8) yields 
 

[ ]{ } { }fTD =                        (10) 
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{ } { njinjinjinji TTTTT ,1,,1,1,,1,, ++++=  

             }1,1,1,1,11,,11,, ++++++++ njinjinjinji TTTT   (13)
 

The integrals in the element matrix and 
element vector of Eq. (10) are numerically 
evaluated by means of the Gauss-Legendre 
technique with 2 x 2 x 2 points in natural 
coordinate system with the help of coordinate 
transformation [2] through the jacobian matrix.  
The coordinates of the ith nodal points of the 
master hexagonal element are given in Table 1.   
In this paper, the element matrices and vectors are 
evaluated implicitly and easily by the numerical 
integration procedure.  There is no need to derive 
the element matrices and vectors of hexahedron 
element explicitly.  The global matrix of variables 
at nth and n-1th time step is obtained by 
assembling all element matrices.    Since the 
values of temperature are known at 0t , values of 
temperature at ttt Δ+= 01  can be obtained after 
applying the boundary and initial conditions and 
then  solving the system of simultaneous linear 
algebraic equations.   At each new time step, an 
identical calculation procedure will be used until 
a required time is reached.    
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Fig. 1 Space-time discretization 
 

       
 
 
 
 
 
 
 
 
 
  

Fig. 2 A hexahedron element  
 

Table 1 Coordinates of (ξi, ηi, ζi) 
Node ξi   ηi  ζi 
1 −1 −1 −1 
2   1 −1 −1 
3   1   1 −1 
4 −1   1 −1 
5 −1 −1   1 
6   1 −1   1 
7   1   1   1 
8 −1   1   1 

 
4. Numerical results 

Four test cases whose solution geometry 
is square to verify the accuracy of the developed 
computer program based on the space-time finite 
element concept.   The volumetric heat generation 
rate of this study is equal to zero.   The finite 
element model of 100 hexahedron elements and 
242 nodes, 121 nodes at the current time n and 
121 nodes at the next time n+1, with 11 nodes 
equally spaced in each x and y directions.   The 
first case is related to a one-dimensional transient 
analysis in semi-infinite medium and other three 
cases are focused on two-dimensional transient 
analysis in a square plate with different boundary 

and initial conditions.   The numerical results are 
compared with those of analytical solutions.   

For case 1, a constant heat flux 0q ′′ = 105 
W/m2 is imposed on the left boundary surface at 
initial time and maintained for 0>t .  Other 
surfaces of the plate are insulated except the right 
surface which its temperature is kept to 35oC.  
Also, the initial temperature of domain is 35oC.   
The length of square plate is 0.1 m.  The 
boundary and initial conditions are shown in Fig. 
3(a).  The analytical solution for this case [5] is 
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where erfc(x) is the complementary error 
function; 0q ′′  is the constant heat flux.    The 
analytical and numerical solutions are plotted in 
Fig. 4.

 For case 2, Fig. 3(b) shows the geometry, 
parameters and conditions of the square plate.   
All the boundary surfaces are kept at zero 
temperature.  The length of square plate is 1 m. 
The analytical solution for the second case [2] is 
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The comparison between exact and 

numerical solutions is shown in Fig. 5.   Fig. 5(b) 
shows the stable numerical solution of space-time 
finite element method which violates the 
maximum size of time step in explicit scheme.  In 
two-dimensional heat conduction problems, the 
limit of time step size for explicit numerical 
scheme [6] is 0.25ρcp(Δx)2/k  where Δx = Δy to 
produce the meaningful solutions.  The maximum 
time step size for case 2 is about 30 sec.  

For case 3, the top and right surface 
temperatures are maintained at 1oC while other 
boundaries are insulated as shown in Fig. 3(c). 
The length of square plate is 1 m.   The analytical 
solution for the third case [1] is 
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Fig. 3 (a) case 1 (b) case 2 (c) case 3 (d) case 4 
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Fig. 4 Case 1: Comparison of space-time finite 
element and exact solutions at the points of the 
middle of the plate ( my 05.0= ) with 

.sec1.0=Δt  
 

 
(a) 

 

 
(b) 

 
Fig. 5 Case 2: Comparison of space-time finite 
element and exact solutions at the points of 

mx 5.0=  with (a) Δt = 10 sec and (b) Δt = 50sec. 
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Fig. 6 Case 3: Comparison of space-time finite 
element and exact solutions at the points of left 
boundary ( 0=x ) with .sec01.0=Δt  
 

 
 

Fig. 7 Case 4: Comparison of space-time 
finite element and exact solutions at the points of 
left boundary ( 0=x ) with .sec100=Δt  

 
Fig. 6 gives the transient temperature 

distribution obtained from the analytical and 
numerical methods.  

For case 4, the top and right surfaces are 
subjected to the convective heat transfer whereas 
the other surfaces are insulated as shown in Fig. 
3(d). The length of square plate is 1 m. The 
analytical solution for the fourth problem [4] is 

 

( ) ( )( )
( )( ) ( )( ) ⋅

++++

+−
= ∑∑

∞

=

∞

=1 1
2222

222

0

exp
4,,

i j ji

ji

HHWHHW
tH

TtyxT
βλ

βλα     

                                

( ) ( )
( ) ( )⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

WW
yx

ji

ji

βλ
βλ

coscos
coscos  (19)

 
where 

  
( )

k
hWii =λλ tan , ( )

k
hWjj =ββ tan  , 

k
hH =  (20) 

 
Fig. 7 shows a comparison of the space-

time finite element solution with the analytical 
solution.    As shown in Figs. 4 - 7, the space-time 
finite element solutions agree well with analytical 
solutions in all test cases. 

5. Conclusions 
A space-time finite element method based on 

Galerkin weighted residual approach is presented 
to predict transient temperature field of two-
dimensional heat conduction model.   The 
proposed method is verified with four examples 
of different model parameters, boundary 
conditions and initial conditions.  The results 
from analytical method and space-time finite 
element method are compared.   The numerical 
results for all problem cases agree well with their 
corresponding analytical results.  The current 
approach has only been tested for linear problems.  
In the future, the space-time finite element 
method should be modified to solve nonlinear 
transient heat conduction problems or the 
transient convection-diffusion problems.  
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