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Abstract 

Vibration-based damage detection, which is a non-destructive method used to detect damage 

occurred in structures, is based on the fact that vibration characteristics such as natural frequencies and 

mode shapes of the structures are changed when the damage occurs. This paper presents co-operative 

co-evolutionary genetic algorithm (CCGA) for vibration-based damage detection in two-dimensional truss 

structures. The objective function, which is a minimum criterion, is a numerical indicator of the differences 

between experimental vibration characteristics and numerically calculated vibration characteristics of 

predicted damage parameters by the finite element method. This numerical indicator is calculated by the 

concept of residual forces. The damage detection of two-dimensional truss structures are formulated as 

the test problems. There are three cases of different amounts and members of occurred damage. After 

simulation runs, the CCGA provides solutions that are obviously better than solutions from previous works 

using standard genetic algorithms although it uses less numbers generated solutions for solution search. 

The solutions obtained from the CCGA are almost the same as exact solutions for all test cases. 

Therefore, by the simulation results, the CCGA is considerably suitable for the damage detection in two-

dimensional truss structures.  

Keywords: Vibration-based damage detection, Genetic Algorithm, Co-operative co-evolution, 

Residual force vector, Eigen problem, Truss structure.  

 

1. Introduction 

Optimization is a very challenging effort in 

engineering field in order to satisfy one or several 

objectives simultaneously. While product designs 

focus on optimal costs in terms of raw materials 

availability, processing, reliability, etc. along the 

product life cycle, non-destructive testing play a 

crucial maintainability role in order to ensure 

continuous evaluation and prediction of failure 

before critical damage becomes disastrous. 

Vibration-based damage detection in structure 

answers both load free testing and long term 

health-monitoring capability, as proven by 

extensive findings after the introduction of 

evolutionary algorithms in solving optimization 

problem. 

A co-operative co-evolutionary genetic 

algorithm [1] is implemented in this paper to 

evaluate the level of damage in truss elements of 

a two-dimensional structure. The exact solutions 
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were computed numerically in advance and will 

be compared with the design variables obtained 

from repeated tests in order to check the 

performance of the proposed algorithm. 

The following section will review related 

literatures which contribute fundamental 

backgrounds to the study, detail the problem 

solving procedure, and discuss significant finding 

for future researches. 

2. Vibration-Based Damage Detection 

Various techniques used to detect damages 

based on changes in modal properties have been 

presented and classified despite slow adoption in 

industry and level of sensitivity to distinguish local 

and global response [1]. Potential of genetic 

algorithms seem widely practical in various 

disciplines. However, other family of evolutionary 

algorithms will be presented alongside and 

proven to explain comparable performance while 

experimented as either a standalone solver [2] or 

in a hybrid technique [3, 4]. 

The studied subjects can be a single beam 

[2], simplified structures [3, 4, 6], or laboratory 

models [3, 5, 6]. Minimum information of the 

subject in vibration based approach is based on 

modal properties consisting of natural frequencies 

and mode shapes. These properties are therefore 

the main objectives in order to assess existence 

of damages in structure and each element while 

combining fundamental mechanical properties 

such as mass and stiffness matrices. 

Although computer becomes increasingly 

powerful in terms of processing speed and 

storage, it is inefficient to explore the whole 

problem space through individual increment. 

Problem solver can be computational expensive 

because of repetitive evaluations of the objective 

function. Meanwhile, if the design parameters do 

not satisfy the termination condition, a new set of 

variables must be chosen and computed 

indefinitely. Followed by crossover and mutation 

or modified operators [7], selection techniques 

such as tournament selection [3, 6], roulette-

wheel selection, or stochastic universal sampling 

are valuable to approximate the most appropriate 

set of solutions. Evolutionary algorithms are often 

the primary choice because of efficient 

exploration of the design space, use of derivative-

free objective function, and therefore avoidance of 

local optima. 

Genetic algorithm has been cited in various 

disciplines. Researchers may include numbers of 

design variables, modify variable abstraction 

technique, combined or alternate different 

selection method, or assess the performance 

between different algorithms and criteria. 

Classification system in vibration based damage 

detection may be based on linearity of damage, 

quantification of severity, or applications. 

Research in various domains proves flexible use 

of evolutionary algorithms [2]. However, 

continuing assessment of performance [6] 

between different approaches can verify the 

strength in terms of accuracy and performance. 

 

3. Co-operative co-evolutionary genetic 

algorithm 

The co-operative co-evolutionary genetic 

algorithm (CCGA) explores the search space by 

utilizing a population which contains a number of 

species or sub-populations. Each species is 

independently evolved as the procedure of genetic 

algorithm. In each species, an individual i 
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represents only a decision variable or part of a 

solution to a problem. A combination of the 

individual i with corresponding variables or solution 

parts from other species will lead to a complete 

solution to the problem where the objective value of 

the complete solution can then be identified. By 

partitioning the solution into species, the search 

space that each species has to cover is 

significantly reduced compared to the full solution 

searches. The CCGA produces best performances 

when there is no coupling between different 

species at all. For instance, a solution is encoded 

into a binary chromosome of length 100; the 

number of possible solutions is 2
100

 = 1.27×10
30
. By 

dividing the binary chromosome into 20 un-coupled 

species of which each is represented by a 5-bit 

binary string, the number of possible solutions is 

then reduced to be only 20×2
5
 = 640. However, if 

there is coupling between species, search 

performances deteriorate with increasing coupling 

strength. Since each species is repeatedly evolved 

as the procedure of genetic algorithm (GA), the 

procedure of the GA is firstly explained, and 

following with the procedure of the CCGA.  

 

3.1 GA procedure 

The genetic algorithm (GA) has been 

extensively explained in [8] and is discussed here 

to illustrate the basic components and mechanisms 

of the GA. The standard procedure of the GA can 

be described as follows. 

1) Read randomly generated individuals of an 

initial population from an input file. 

2) Decode the chromosome of every 

individual in order to obtain solutions of the problem. 

3) Calculate objective value fi of each 

individual i in the population. 

4) Calculate the fitness of each individual, 

using the obtained objective value. 

The fitness (Fi), which is a maximum criterion, 

of the individual i is directly assigned to be minus fi 

and fi for minimization and maximization problems 

respectively. 
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The fitness Fi is therefore normalized by using 

the minimum (Fmin) and maximum fitness (Fmax) of 

individuals in current population. The normalized 

fitness NFi is given by 
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The fitness scaling technique is introduced in 

order to improve performance of search 

mechanism. The aim of this technique is to make 

more difference between the maximum and 

average fitness values to be used in the following 

selection process by the introduction of a scaling 

factor which is more than one. The scaled fitness 

(SFi) of the individual i can be directly evaluated by 

the normalized fitness. 
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where NFavg is the average of normalized fitness 

of individuals in the current population while SCF is 

a pre-defined scaling factor. 

5) Select a parent population from the current 

population. 

In this paper, a stochastic universal sampling 
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(SUS) selection is used for the parent selections by 

consideration of the scaled fitness previously 

obtained by Eq. (3). 

6) Perform a transformation on the parent 

population using genetic operators, crossover and 

mutation, to obtain the resulting offspring population. 

7) Go back to 2) until a convergence is 

observed from the solutions found or a fixed 

number of iterations is reached. It is noted that one 

loop from 2) to 6) is called one generation of a 

genetic algorithm run. 

By adding the elitism operator, after 4), then a 

set of fit individuals might be kept without crossover 

and mutation, and merged with the newly 

generated individuals from crossover and mutation 

in 6) to form the new population. Elitism can 

generally be described as a special way which is 

incorporated into a genetic algorithm in order to 

promote the survival of the best individual found. 

The main reason behind the use of elitism is the 

fact that there is always a possibility that a 

crossover or mutation operation might eliminate the 

best individual found within each generation, 

subsequently, the best individual in each generation 

might be worse than that of the previous generation. 

In order to guarantee that the best solution found 

from each generation is not lost though the search 

propagation. The most commonly used elitism is to 

pass the first n number of best individuals from the 

current generation to the next generation without 

crossover and mutation. 

3.2 CCGA procedure 

The main procedure of the CCGA is as follows. 

1) Read randomly generated individuals of an 

initial population from an input file. 

2) Decode the chromosome of every 

individual in order to obtain solutions of the problem 

and calculate objective values of all individuals. The 

individual having the best objective is assigned to 

be the current best individual. 

3) Start with species counter s = 1 and divide 

an individual in the initial population into a number 

of parts in which each part represent for each 

species. The objective value of an individual in the 

initial population will be the initial objective value of 

a corresponding individual in each species. The 

fitness calculation and parent selection will be 

performed in order to obtain the resulting sub-

population of each species. 

The initial objective calculation of the CCGA in 

this paper is quite different from the original initial 

objective calculation by Potter and De Jong [1]. The 

initial objective calculation in this paper is proposed 

to reduce computational time and to ensure that the 

initial best solution for the CCGA is same as that 

for the GA if starting with a same initial population 

for an optimization problem. 

4) In the current species s, a corresponding 

full solution of an individual i is obtained by the 

combination of the individual i with the 

corresponding parts from other species of the best 

individual. The objective value of the individual i will 

be equal to that of the complete solution. If the 

objective value of the complete solution is better 

than that of the current best individual, the best 

individual and its objective value are then updated. 

5) Assign fitness, select parents, and perform 

crossover and mutation to the individuals in sub-

population of the current species s as 4) to 6) in 

the GA procedure, thereafter increase the species 

counter s = s + 1 and go back to 4) until the last 

species is finished. In the CCGA, the elitism 

operator can be added into the search mechanism 
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after the fitness calculation as the GA. 

6) Check termination condition. If the 

condition is satisfied, report the final best individual 

as the output solution, otherwise, restart species 

counter s = 1 and go back to 4). It is noted that 

one loop from 4) to 5) is called one generation of 

the CCGA run. 

In the CCGA, the number of generated 

solutions from one generation is equal to the 

number of species times the number generated 

solutions from one generation of the GA. For the 

equal numbers of generated solutions, the number 

of maximum generations, which is used for 

termination condition, of the CCGA is equal to that 

of the GA dividing the defined number of species. 

 

4. Calculation of objective function 

This section shows how to calculate objective 

function. The calculation of objective function is 

adopted from [3] and [9]. The equation of motion of 

dynamics of a multi degree freedom system is 

given by 

 

)}({)}(]{[)}(]{[ tFtxktxm =+&&

 
 (4) 

 

where [m] and [k] are (n×n) mass and stiffness 

matrices and {x} and {F} are (n×1) displacement 

and applied force vectors. 

The j
th
 eigen equation associated with Eq. (4) is 

given by the following equation 
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 (5) 

 

where λj and {vj} are the j
th
 eigen value and 

corresponding unit eigen vector. 

In the finite element model of the structure, the 

matrix [k] can be represented as a sum of the 

expanded element stiffness matrices of all divided 

elements. 
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where [k]i represents the expanded stiffness 

matrix of an i
th
 element and N is the number of 

divided elements. 

Similarly, the matrix [m] is a sum of the 

expanded element mass matrices of all divided 

elements. 

 

∑
=

=
N

i

imm
1

][][
 

 (7) 

 

where [m]i represents the expanded mass 

matrix of the i
th
 element and N is the number of 

divided elements. 

When damage occurs in a structure, stiffness 

matrix of the damaged structure [kd] can be 

expressed as a sum of element stiffness matrices 

multiplied by stiffness factors associated with each of 

the N elements αi (i = 1, 2, . . . , N), resulting from 

the damage. 

Then, the stiffness matrix of the damaged 

structure is given by 
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 (8) 

 

The values of the parameters fall in the range 0 

to 1. The stiffness factor αi = 1 indicates that the 

element is undamaged and αi = 0 or less than 1 

implies completely or partially damaged element 

respectively. The experimental natural frequencies 

and unit amplitude vectors or mode shapes of the 
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damaged structure are approximated to satisfy the 

eigen equation, Eq. (5), of j
th
 mode, therefore the 

equation can be rewritten as 

 

}0{}]{[}]{[ =− jdjdjdd vmvk λ
 

 (9) 

 

where λjd and {vjd} are the approximated 

experimental eigenvalue and unit eigenvector of j
th
 

mode. Moreover, it is assumed that the mass 

matrix is unchanged due to the damage. 

If β1, β2, …, βN are decision variables which are 

the predicted stiffness factors. By substituting the 

predicted stiffness factors into Eqs. (4) and (5), an 

expression residual force vector of j
th
 mode in a 

function of βi can be evaluated as follows. 
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The residual vector {Rj} will be {0}, only if a 

correct set of βi, which shows that βi = αi for all i, is 

introduced under the experimentally damaged modal 

information λjd and {vjd} for a particular mode j. 

The (n×n) residual force matrix [R] is therefore 

obtained by 

 

}]}...{}{[{][ 21 nRRRR =
 

 (11) 

 

If all βi are correct, all elements of the matrix [R] 

must be 0. Unlike the previous works [5, 6] that the 

objective function is calculated from only diagonal 

terms of the residual matrix, in this paper, the 

objective function f of a set of predicted damage 

factors is evaluated from all elements of the residual 

matrix, f is represented by 

∑∑
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 (12) 

 

where N is the number of elements and n is the 

number of degrees of freedom.  

5. Numerical test 

The damage identification problem of two 

dimensional trusses in Rao et al. [3] was tested to 

validate the robustness of CCGA and to compare 

with the finding of previous author. The structure 

in Fig. 1 is formed by 11 truss elements with the 

following properties in table 1. 

.. 

Fig. 1 Truss structure 

Table 1 Properties of the truss structure 

Young’s modulus E 207  GPa 

Density ρ 7860  kg/m
3
 

Cross section A 0.0011 m
2
 

Length of each bay l 0.75  m 

 

The modal properties were computed in 

advance following 3 cases of varying stiffness 

factor: 1) all members are undamaged; 2) partial 

damages of 0.7 in element 3 and 0.3 in 6; and 3) 

complete damage or absence of element 10. 

Parameter settings of the algorithm are presented 

in table 2. 
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Table 2 Parameter settings 

Parameters Setting and Values 

Chromosome coding Real-value chromosome 

with 11 decision variables 

Number of decision 

variables in a specie 

11 

Number of species Number of decision 

variables 

Population size 20 

Number of elite 

individuals 

2 for every specie 

Scaling factor 2.0 

Selection method Stochastic universal 

sampling selection 

Crossover method Simulated-binary 

crossover (ηc = 15) 

with probability =1.0 

Mutation method Variable-wise polynomial 

mutation (ηm = 20)  

with probability = 0.5 

Number of 

generations 

25 

The convergence of the solution can be 

concluded when the fitness value stabilizes, thus, 

the stiffness factor of each members can be 

finalized. The solution set converges after 200
th
 

iteration in each case (Fig. 2-4). 

The comparison in table 3 shows stiffness 

factor of different elements in function of solving 

techniques and cases. The difference implies that 

CCGA can solve more accurately than previous 

finding using traditional genetic algorithm. Many 

of the solution also approach close to the exact 

solution at higher number of decimal point. 

 

 
Fig. 2 Stiffness factor in case 1 

 
Fig. 3 Stiffness factor in case 2 

 

 
Fig. 4 Stiffness factor in case 3 
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Table 3 Comparison of stiffness factor in each case with simulated results and Rao et al. [3] 

Element

Case 1  Case 2  Case 3 

Exact Rao et 

al. 

CCGA  Exact Rao et 

al. 

CCGA  Exact Rao et 

al. 

CCGA 

1 1 0.9882 1.00000000  1.0 0.9974 0.99999983  1 0.9882 0.99999959 

2 1 0.9982 0.99999996  1.0 0.9784 0.99999953  1 0.9941 0.99999990 

3 1 0.9833 0.99999964  0.3 0.3176 0.29989888  1 0.9804 0.99999944 

4 1 0.9941 0.99999999  1.0 1.0000 0.99999963  1 1.0000 1.00000000 

5 1 0.9902 1.00000000  1.0 0.9892 0.99999995  1 0.9941 0.99999999 

6 1 0.9990 0.99999921  0.7 0.6920 0.70003016  1 0.9723 0.99999998 

7 1 0.9912 0.99999980  1.0 0.9970 0.99999984  1 0.9920 0.99999987 

8 1 1.0000 0.99999992  1.0 0.9361 0.99998622  1 0.9991 0.99999998 

9 1 0.9981 0.99999959  1.0 1.0000 0.99999374  1 1.0000 0.99999995 

10 1 1.0000 0.99998890  1.0 0.9853 0.99999739  0 0.0009 0.00000055 

11 1 0.9983 0.99999990  1.0 0.9967 0.99999998  1 1.0000 0.99999996 

 

6. Conclusion 

Based on the findings on performance in 

terms of mathematical model as well as numerical 

experiments, CCGA satisfies this case of 

vibration-based damage detection better than 

conventional genetic algorithm. Therefore, more 

cases should be examined and compared to 

other algorithms in order to alternate or to co-

operate different approaches efficiently. 
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